Limit search to available items
Book Cover
E-book

Title AC electric motors control : advanced design techniques and applications / [compiled by] Fouad Giri
Published Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., [2013]
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource
Contents 880-01 pt. 1. Control models for AC motors -- pt. 2. Observer design techniques for AC motors -- pt. 3. Control design techniques for induction motors -- pt. 4. Control design techniques for synchronous motors -- pt. 5. Industrial applications of AC motors control
880-01/(S Contents note continued: 14.6.3. Application of the DWT to the Analysis of the Start-up Current of a Motor with a Broken Bar in the Rotor -- 14.6.4. Diagnosis of a Machine with Mixed Eccentricity through the Start-up Current -- 14.7. Continuous Wavelet Transform Approach -- 14.7.1. Application of the CWT to Diagnostic of Electrical Machines -- 14.7.2. Application of the Complex CWT to Diagnostic of Electrical Machines -- 14.7.3. Experimental Results -- 14.8. Wigner-Ville Distribution Approach -- 14.8.1. Basis for the Application of the WVD to Diagnostic of Electrical Machines -- 14.8.2. Application of the WVD to Monocomponent Signals -- 14.8.3. Application of the WVD to Multicomponent Signals -- 14.9. Instantaneous Frequency Approach -- 14.9.1. Basis for the Application of the IF Approach to Diagnostic of Electrical Machines -- 14.9.2. Calculating the IF of a Monocomponent Signal -- 14.9.3. Practical Application of the IF Approach -- References -- pt. Four Control Design Techniques for Synchronous Motors -- 15. Sensorless Speed Control of PMSM / Michael Hilairet -- 15.1. Introduction -- 15.2. PMSM Models and Problem Formulation -- 15.2.1. Problem Formulation -- 15.3. Controller Structure and Main Result -- 15.4. Unavailability of a Linearization-Based Design -- 15.5. Full Information Control -- 15.5.1. Port-Hamiltonian Model -- 15.5.2. Full-Information IDA-PBC -- 15.5.3. Certainty Equivalent Sensorless Controller -- 15.6. Position Observer of Ortega et al. (2011) -- 15.6.1. Flux Observer and Stability Properties -- 15.6.2. Description of the Observer in Terms of ραβ -- 15.7. I&I Speed and Load Torque Observer -- 15.8. Proof of the Main Result -- 15.8.1. Currents and Speed Tracking Errors -- 15.8.2. Estimation Error for ραβ -- 15.8.3. Speed and Load Torque Estimation Errors -- 15.8.4. Proof of Proposition 15.3.1 -- 15.9. Simulation and Experimental Results -- 15.9.1. Simulation Results -- 15.9.2. Experimental Results -- 15.10. Future Research -- 15.A. Appendix -- References -- 16. Adaptive Output-Feedback Control of Permanent-Magnet Synchronous Motors / Cristiano Maria Verrelli -- 16.1. Introduction -- 16.2. Dynamic Model and Problem Statement -- 16.3. Nonlinear Adaptive Control -- 16.4. Preliminary Result (Tomei and Verrelli 2008) -- 16.5. Main Result (Tomei and Verrelli 2011) -- 16.6. Simulation Results (Bifaretti et al. 2012) -- 16.6.1. Response to Time-Varying Load Torque -- 16.6.2. Response to Parameter Uncertainties -- 16.7. Experimental Setup and Results (Bifaretti et al. 2012) -- 16.8. Conclusions -- References -- 17. Robust Fault Detection for a Permanent-Magnet Synchronous Motor Using a Nonlinear Observer / Giuseppe Orlando -- 17.1. Introduction -- 17.2. Preliminaries -- 17.2.1. PMSM Modeling -- 17.3. Control Design -- 17.3.1. Robust Observer of Rotor Angular Position and Velocity for the Tracking Problem -- 17.4. Faulty Case -- 17.5. Simulation Tests -- References -- 18. On Digitization of Variable Structure Control for Permanent Magnet Synchronous Motors / Fengling Han -- 18.1. Introduction -- 18.2. Control System of PMSM -- 18.3. Dynamic Model of PMSM -- 18.4. PI Control of PMSM Servo-System -- 18.5. High-Order Terminal Sliding-Mode Control of PMSM Servo System -- 18.5.1. Velocity Controller Design -- 18.5.2. q-Axis Current Controller Design -- 18.5.3. d-Axis Current Controller Design -- 18.5.4. Simulations -- 18.6. Sliding-Mode-Based Mechanical Resonance Suppressing Method -- 18.6.1. Load Speed Controller Design -- 18.6.2. d-Axis Current Controller Design -- 18.6.3. q-Axis Current Controller Design -- 18.6.4. Simulations -- 18.7. Digitization of TSM Controllers of PMSM Servo System -- 18.7.1. Backward Difference Discretization Method -- 18.7.2. Bilinear Transformation -- 18.8. Conclusions -- References -- 19. Control of Interior Permanent Magnet Synchronous Machines / Rukmi Dutta -- 19.1. Introduction -- 19.2. IPM Synchronous Machine Model -- 19.2.1. Torque-Speed Characteristics in the Steady State -- 19.2.2. Optimum Control Trajectories for IPM Synchronous Machines in the Rotor Reference Frame -- 19.3. Optimum Control Trajectories -- 19.3.1. MTPA Trajectory -- 19.3.2. Field-Weakening (Constant-Power) Trajectory -- 19.3.3. Implementation Issues of Current Vector Controlled IPMSM Drive -- 19.4. Sensorless Direct Torque Control of IPM Synchronous Machines -- 19.4.1. Control of the Amplitude and Rotation of the Stator Flux Linkage Vector -- 19.4.2. Optimum Control Trajectories with DTC -- 19.4.3. Implementation of Trajectory Control for DTC -- 19.5. Sensorless DTC with Closed-Loop Flux Estimation -- 19.6. Sensorless Operation at Very Low Speed with High-Frequency Injection -- 19.7. Conclusions -- References -- 20. Nonlinear State-Feedback Control of Three-Phase Wound Rotor Synchronous Motors / Fouad Giri -- 20.1. Introduction -- 20.2. System Modeling -- 20.2.1. Three-Phases AC/DC Rectifier Modeling -- 20.2.2. Inverter-Motor Subsystem Modeling -- 20.3. Nonlinear Adaptive Controller Design -- 20.3.1. Control Objectives -- 20.3.2. Inverter-Motor Subsystem Control Design -- 20.3.3. Reactive Power and DC Voltage Controller -- 20.4. Simulation -- 20.4.1. Simulation and Implementation Considerations -- 20.4.2. Simulation Results -- 20.5. Conclusion -- References -- pt. Five Industrial Applications of AC Motors Control -- 21. AC Motor Control Applications in Vehicle Traction / Rukmi Dutta -- 21.1. Introduction -- 21.1.1. Electromechanical Requirements for Traction Drives in the Steady-State -- 21.1.2. Impact of CPSR on Motor Power Rating and Acceleration Time of a Vehicle -- 21.2. Machines and Associated Control for Traction Applications -- 21.2.1. Induction Machines -- 21.2.2. Interior Permanent Magnet Synchronous Machines -- 21.2.3. Switched Reluctance Machines -- 21.3. Power Converters for AC Electric Traction Drives -- 21.4. Control Issues for Traction Drives -- 21.4.1. Torque and Slip-Speed Ratio Control -- 21.4.2. Control of Regenerative Braking -- 21.5. Conclusions -- References -- 22. Induction Motor Control Application in High-Speed Train Electric Drive / Marc Diguet -- 22.1. Introduction -- 22.2. Description of the High-Speed Train Traction System -- 22.2.1. Induction Motor -- 22.2.2. Torque Transmission System -- 22.2.3. High-Power Electronic Converter -- 22.2.4. Motor Control Principle -- 22.3. Estimation Methods -- 22.3.1. Speed Observer -- 22.3.2. Motor Torque Estimation -- 22.4. Simulation Investigations -- 22.5. Experimental Test Bench -- 22.6. Experimental Investigations -- 22.7. Diagnosis System Principles -- 22.7.1. Diagnosis of Speed Sensor -- 22.7.2. Diagnosis of Traction Torque Transmission -- 22.8. Summary and Perspectives -- References -- 23. AC Motor Control Applications in High-Power Industrial Drives / Ajit K. Chattopadhyay -- 23.1. Introduction -- 23.2. High-Power Semiconductor Devices -- 23.2.1. High-Power SCR -- 23.2.2. High-Power GTO -- 23.2.3. IGCT/GCT -- 23.2.4. IGBT -- 23.2.5. IEGT -- 23.3. High-Power Converters for AC Drives and Control Methods -- 23.3.1. Pulse Width Modulation for Converters -- 23.3.2. Control Methods of High-Power Converter-Fed Drives -- 23.4. Control of Induction Motor Drives -- 23.4.1. Induction Motor Drives with Scalar or Volts/Hz Control -- 23.4.2. Induction Motor Drives with Vector Control -- 23.4.3. Induction Motor Drives with Direct Torque Control (DTC) -- 23.5. Control of Synchronous Motor Drives -- 23.5.1. Synchronous Motor Drives with Scalar Control -- 23.5.2. Synchronous Motor Drives with Vector Control -- 23.6. Application Examples of Control of High-Power AC Drives -- 23.6.1. Steel Mills -- 23.6.2. Cement and Ore Grinding Mills -- 23.6.3. Ship Drive and Marine Electric Propulsion -- 23.6.4. Mine Hoists, Winders, and Draglines -- 23.6.5. Pumps, Fans and Compressors in the Industry -- 23.7. New Developments and Future Trends -- 23.8. Conclusions -- References
Summary The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Electric motors, Alternating current -- Automatic control
SCIENCE -- System Theory.
Electric motors, Alternating current -- Automatic control.
Form Electronic book
Author Giri, Fouad, editor
LC no. 2013008032
ISBN 9781118574249
1118574249
1118574257
9781118574256
1118574273
9781118574263
1118574265
9781118574270
1118331524
9781118331521
9781299465152
1299465153