Limit search to available items
Book Cover
E-book
Author Giovannini, Massimo, 1968-

Title A primer on the physics of the cosmic microwave background / Massimo Giovannini
Published Singapore ; Hackensack, NJ : World Scientific, ©2008

Copies

Description 1 online resource (xiv, 474 pages) : illustrations
Contents 1. Why CMB physics? 1.1. The blackbody spectrum and its physical implications. 1.2. A bit of history of CMB observations. 1.3. The entropy of the CMB and its implications. 1.4. The time evolution of the CMB temperature. 1.5. A quick glance to the Sunyaev-Zeldovich effect. 1.6. Cosmological parameters -- 2. From CMB to the Standard Cosmological Model. 2.1. The Standard Cosmological Model (SCM). 2.2. Friedmann-Lemaître equations. 2.3. Matter content of the SCM. 2.4. The future of the Universe. 2.5. The past of the Universe. 2.6. Simplified numerical estimates -- 3. Problems with the SCM. 3.1. The horizon problem. 3.2. The spatial curvature problem. 3.3. The entropy problem. 3.4. The structure formation problem. 3.5. The singularity problem -- 4. SCM and beyond. 4.1. The horizon and the flatness problems. 4.2. Classical and quantum fluctuations. 4.3. The entropy problem. 4.4. The problem of geodesic incompleteness -- 5. Essentials of inflationary dynamics. 5.1. Fully inhomogeneous Friedmann-Lemaître equations. 5.2. Homogeneous evolution of a scalar field. 5.3. Classification(s) of inflationary backgrounds. 5.4. Exact inflationary backgrounds. 5.5. Slow-roll dynamics. 5.6. Slow-roll parameters -- 6. Inhomogeneities in FRW models. 6.1. Decomposition of inhomogeneities in FRW Universes. 6.2. Gauge issues for the scalar modes. 6.3. Super-adiabatic amplification. 6.4. Quantum mechanical description of the tensor modes. 6.5. Spectra of relic gravitons. 6.6. Quantum state of cosmological perturbations. 6.7. Digression on different vacua. 6.8. Numerical estimates of the mixing coefficients -- 7. The first lap in CMB anisotropies. 7.1. Tensor Sachs-Wolfe effect. 7.2. Scalar Sachs-Wolfe effect. 7.3. Scalar modes in the pre-decoupling phase. 7.4. CDM-radiation system. 7.5. Adiabatic and non-adiabatic modes: an example. 7.6. Sachs-Wolfe plateau: mixture of initial conditions -- 8. Improved fluid description of pre-decoupling physics. 8.1. The general plasma with four components. 8.2. CDM component. 8.3. Tight-coupling between photons and baryons. 8.4. Shear viscosity and silk damping. 8.5. The adiabatic solution. 8.6. Pre-equality non-adiabatic initial conditions. 8.7. Numerics in the tight-coupling approximation -- 9. Kinetic hierarchies. 9.1. Collisionless Boltzmann equation. 9.2. Boltzmann hierarchy for massless neutrinos. 9.3. Brightness perturbations of the radiation field. 9.4. Evolution equations for the brightness perturbations. 9.5. Line of sight integrals. 9.6. Tight-coupling expansion. 9.7. Zeroth order in tight-coupling: acoustic oscillations. 9.8. First order in tight-coupling: polarization. 9.9. Second order in tight-coupling: diffusion damping. 9.10. Semi-analytical approach to Doppler oscillations -- 10. Early initial conditions? 10.1. Minimally coupled scalar field. 10.2. Spectral relations. 10.3. Curvature perturbations and density contrasts. 10.4. Hamiltonians for the scalar problem. 10.5. Trans-Planckian problems? 10.6. How many adiabatic modes? -- 11. Surfing on the gauges. 11.1. The longitudinal gauge. 11.2. The synchronous gauge. 11.3. Comoving orthogonal hypersurfaces. 11.4. Uniform density hypersurfaces. 11.5. The off-diagonal gauge. 11.6. Mixed gauge-invariant treatments -- 12. Interacting fluids. 12.1. Interacting fluids with bulk viscous stresses. 12.2. Evolution equations for the entropy fluctuations. 12.3. Specific physical limits. 12.4. Mixing between entropy and curvature perturbations -- 13. Spectator fields. 13.1. Spectator fields in a fluid background. 13.2. Unconventional inflationary models. 13.3. Conventional inflationary models
Summary In the last fifteen years, various areas of high energy physics, astrophysics and theoretical physics have converged on the study of cosmology so that any graduate student in these disciplines today needs a reasonably self-contained introduction to the Cosmic Microwave Background (CMB). This book presents the essential theoretical tools necessary to acquire a modern working knowledge of CMB physics. The style of the book, falling somewhere between a monograph and a set of lecture notes, is pedagogical and the author uses the typical approach of theoretical physics to explain the main problems in detail, touching on the main assumptions and derivations of a fascinating subject
Bibliography Includes bibliographical references (pages 455-466) and index
Notes English
Print version record
Subject Cosmic background radiation.
Physics.
Physics
physics.
SCIENCE -- Cosmology.
Physics
Cosmic background radiation
Form Electronic book
ISBN 9789812791436
9812791434
1281933937
9781281933935
9786611933937
661193393X