Limit search to available items
Book Cover
E-book
Author Siddique, Nazmul

Title Opportunistic Networking : Vehicular, D2D and Cognitive Radio Networks
Edition First edition
Published Boca Raton : CRC Press, 2017
©2017
Online access available from:
ProQuest Ebook Central    View Resource Record  
ProQuest Ebook Central Subscription    View Resource Record  

Copies

Description 1 online resource (333 pages)
Contents Cover -- Title Page -- Copyright Page -- Contents -- Editors -- Contributors -- Chapter 1: Introduction -- 1.1 Introduction -- 1.2 Mobile Ad Hoc Networks -- 1.3 Opportunistic Networking -- 1.3.1 Opportunistic Vehicular Communication -- 1.3.2 Routing in Opportunistic Networks -- 1.4 Applications -- 1.4.1 Smart Environments -- 1.4.2 Smart Homes -- 1.4.3 Smart Cities -- 1.4.4 Smart Agriculture -- 1.4.5 Smart Health Care -- 1.4.6 Emergency Communications: An Introduction to Never-Die Networks -- 1.5 The Road Ahead -- References -- Chapter 2: Opportunistic Networking: An Application -- 2.1 Wireless Mobile Communication -- 2.1.1 Infrastructure-Based Communication -- 2.1.2 Infrastructureless Communication -- 2.2 Opportunistic Networks -- 2.2.1 Characteristics of Opportunistic Networks -- 2.3 Data Delivery in Opportunistic Networks -- 2.3.1 Forwarding Protocols -- 2.3.1.1 Flooding-Based Protocols -- 2.3.1.2 Context-Based Protocols -- 2.3.2 Data Dissemination Protocols -- 2.4 Repository-Based Data Dissemination System -- 2.4.1 Repository-Based Data Dissemination Design Assumptions -- 2.4.2 Repository-Based Data Dissemination Architecture -- 2.4.2.1 Data Object Management -- 2.4.2.2 User Preference Management -- 2.4.2.3 Dissemination Protocol -- 2.4.2.4 Repository Placement -- 2.5 Repository-Based Data Dissemination for Opportunistic Networking undefined -- 2.5.1 Performance Metrics -- 2.5.2 Evaluation of Repository Location Strategies -- 2.5.2.1 Experimental Scenarios -- 2.5.2.2 Test Results -- 2.5.3 Repository-Based Data Dissemination Performance -- 2.5.3.1 Experiment Setting -- 2.5.4 Repository-Based Data Dissemination in a Partially Cooperative Environment -- 2.5.4.1 Experiment Setting
2.5.5 Repository-Based Data Dissemination in Partial Subscription Scenarios -- 2.5.5.1 Experiment Setting -- 2.6 Conclusion -- References -- Chapter 3: Mobile Ad Hoc Networks: Rapidly Deployable Emergency Communications -- 3.1 Introduction -- 3.2 Rapidly Deployable Emergency Communications -- 3.3 Alternative Paradigm -- 3.4 Challenges -- 3.5 TCP Flow Control -- 3.6 Overview of Beatha -- 3.6.1 Connection Management -- 3.6.2 Segment Management -- 3.6.3 Acknowledgment -- 3.6.4 Retransmission Timer Management -- 3.6.5 Flow Control -- 3.7 Experimental Setup -- 3.7.1 Configurations -- 3.7.2 Simulation Scenarios -- 3.8 Performance Evaluation undefined -- 3.8.1 Evaluation of Throughput -- 3.8.2 Evaluation of Retransmission -- 3.8.3 Evaluation of Data Rate -- 3.8.4 Evaluation of Delay -- 3.8.5 Evaluation of Acknowledgment -- 3.9 Conclusion and Future Studies -- References -- Chapter 4: Opportunistic Vehicular Communication: Challenges and Solutions -- 4.1 Introduction -- 4.2 Wireless Technologies for Vehicular Communication Networks -- 4.2.1 IEEE 802.11 -- 4.2.1.1 IEEE 802.11 Components -- 4.2.1.2 802.11 Working Modes -- 4.2.1.3 IEEE 802.11 Services -- 4.2.1.4 Handover in 802.11 -- 4.2.2 IEEE 802.11 for VANET -- 4.2.2.1 Adapted 802.11 for VANETs -- 4.2.2.2 IEEE 802.11p: A New Amendment of 802.11 for VANETs -- 4.3 Predictive Methods for Improving Opportunistic Vehicular Communication -- 4.3.1 Vehicle Motion Path Prediction Methods -- 4.3.2 VANET Improvement Based on Vehicle Position Prediction -- 4.3.2.1 Applying Predicted Vehicle Position for Infrastructure-Based VANETs -- 4.3.2.2 Applying Predicted Vehicle Motions for Infrastructureless VANETs -- 4.4 Opportunistic Routing in Vehicular Communication -- 4.4.1 Routing without Infrastructure -- 4.4.1.1 Dissemination-Based Routing -- 4.4.1.2 Context-Based Routing
4.4.2 Routing with Infrastructure -- 4.4.2.1 Routing Based on Fixed Infrastructure -- 4.4.2.2 Routing Based on Mobile Infrastructure (Carrier-Based Routing) -- 4.5 Summary -- References -- Chapter 5: Routing Protocols in Opportunistic Networks -- 5.1 Introduction -- 5.1.1 Context Information -- 5.2 Routing in Opportunistic Networks -- 5.3 Context-Oblivious Routing -- 5.3.1 Direct Transmission Routing -- 5.3.2 Epidemic Routing Protocol -- 5.3.3 Spray and Wait Routing -- 5.3.4 Network Coding Protocol -- 5.3.5 Erasure Coding-Based Data Forwarding -- 5.3.6 Aggressive Erasure Coding-Based Data Forwarding -- 5.3.7 Hybrid Erasure Coding-Based Data Forwarding -- 5.4 Partially Context-Aware Routing -- 5.4.1 Randomized Routing -- 5.4.2 Utility-Based Routing -- 5.4.3 Seek and Focus Routing -- 5.4.4 Prioritized Epidemic Routing -- 5.4.5 Probabilistic Routing Protocol Using History of Encounters and Transitivity -- 5.4.5.1 Delivery Predictability Calculation -- 5.4.5.2 Forwarding Strategies -- 5.4.6 Meetings and Visits (MV) Forwarding Algorithm -- 5.4.6.1 Assumption -- 5.4.6.2 The MV Algorithm -- 5.4.6.3 Probability of Delivery -- 5.4.7 The MaxProp Protocol -- 5.4.7.1 Model -- 5.4.7.2 Protocol Definition -- 5.4.8 MobySpace: A Mobility Pattern Space -- 5.4.8.1 Mobility Pattern Characterization -- 5.4.8.2 Mobility Pattern Acquisition -- 5.4.8.3 Mobility Pattern Usage -- 5.4.9 Spray and Focus -- 5.4.9.1 Spray Phase -- 5.4.9.2 Focus Phase -- 5.4.10 BUBBLE Rap Routing -- 5.4.11 Integrated Routing Protocol -- 5.4.11.1 Probability Calculation -- 5.4.11.2 Routing Strategies -- 5.5 Fully Context-Aware Routing -- 5.5.1 Context-Aware Routing -- 5.5.1.1 Prediction and Evaluation of Context -- 5.5.1.2 Local Evaluation of Context Information -- 5.5.1.3 Prediction of the Information Attributes using Kalman Filters
5.5.2 History-Based Opportunistic Routing Protocol -- 5.5.2.1 Context Creation and Management -- 5.5.2.2 Forwarding Operations -- 5.6 Case Studies and Applications -- 5.6.1 Haggle Project -- 5.6.2 DakNet Project -- 5.6.3 ZebraNet Project -- 5.7 Summary -- References -- Chapter 6: Smart Environments: Exploiting Passive RFID Technology for Indoor Localization -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Non-RFID and Hybrid Approaches -- 6.2.2 RFID Localization -- 6.2.3 Literature Assessment -- 6.3 Passive RFID Primers -- 6.3.1 False Reading Challenges -- 6.3.1.1 Iteration-Based Filter -- 6.3.2 Variation of the RSSI -- 6.3.2.1 Testing the Gaussian Filter -- 6.4 Proximity-Based Localization -- 6.4.1 Other Proximity Methods -- 6.5 Trilateration -- 6.5.1 Elliptic Trilateration -- 6.5.2 Nonintersecting Problem -- 6.5.3 Selecting the Final Position -- 6.5.4 Validation and Discussion -- 6.6 Learning-Based Localization -- 6.6.1 Validation and Discussion -- 6.7 Modeling and Inferring Information from Sensor Output -- 6.7.1 Main Types of Information -- 6.7.2 Gesture Recognition -- 6.7.3 Zone Association with Fuzzy Logic -- 6.7.3.1 Evaluation of the Rules -- 6.7.3.2 Aggregation of Conclusions and Defuzzification -- 6.8 Summary -- Acknowledgments -- References -- Chapter 7: Smart Homes: Practical Guidelines -- 7.1 Introduction -- 7.2 Smart Homes -- 7.3 Smart Home Hardware -- 7.3.1 Sensor Selection -- 7.3.1.1 Energy Efficiency -- 7.3.1.2 Resident's Perception of Sensors -- 7.3.2 Sensor Type Description -- 7.3.2.1 Video Cameras and Microphones -- 7.3.2.2 Smart Power Analyzer -- 7.3.2.3 Radio Frequency Identification -- 7.3.2.4 Ultrasonic Sensors -- 7.3.2.5 Other Sensors and Comparison -- 7.3.3 Communication Technologies -- 7.3.3.1 Centralized or Decentralized Processing
7.3.4 Choosing the Right Effectors -- 7.3.4.1 Categories of Prompts -- 7.3.4.2 Guidelines for Choosing Prompts -- 7.3.4.3 Validation of the Guidelines -- 7.4 Smart Home Software -- 7.4.1 Addressing Heterogeneity -- 7.4.2 Calculation Complexity -- 7.4.3 Designing for the Resident -- 7.4.4 Energy Management -- 7.5 The LIARA Smart Home Case Study -- 7.5.1 Hardware Design Choices -- 7.5.1.1 LIARA's Sensors and Effectors -- 7.5.1.2 RFID Technology -- 7.5.2 LIARA's Software Architecture -- 7.5.2.1 Smart Home Visualization Tool -- 7.5.2.2 Scenario Recording -- 7.5.2.3 Clinical Trials at the Laboratory -- 7.5.3 Supplementary AI -- 7.5.3.1 Tracking the Resident -- 7.5.4 Object Tracking -- 7.6 Promoting Collaboration between Researchers -- 7.6.1 SIMACT -- 7.6.1.1 SIMACT Architecture -- 7.6.2 Open Database -- 7.6.3 Prompting Tool -- 7.7 Summary -- Acknowledgments -- References -- Chapter 8: Wireless Sensor Network-Based Smart Agriculture -- 8.1 Introduction -- 8.2 WSN Applications in Smart Agriculture -- 8.2.1 Precision Agriculture -- 8.2.2 Irrigation Systems -- 8.2.3 Greenhouses -- 8.2.4 Weather Stations -- 8.2.5 Underground Monitoring -- 8.3 WSN-SA: A Generic WSN-Based Smart Agriculture Architecture undefined -- 8.3.1 System Input Module -- 8.3.1.1 Sensing Unit -- 8.3.1.2 Processing Unit -- 8.3.1.3 Transceiver Unit -- 8.3.1.4 Power Unit -- 8.4 Typical WSN Platforms to Enable Smart Agriculture -- 8.4.1 System Communication Module -- 8.4.1.1 Classical Networking -- 8.4.1.2 Opportunistic Networking -- 8.4.2 System Output Module -- 8.5 WSN Deployment for Smart Agriculture: A Case Study -- 8.6 The Road Ahead -- 8.7 Conclusion -- Acknowledgments -- References
Chapter 9: Cognitive Radio Networks: Concepts and Applications
Notes ProQuest Ebook Central ATO Loan
Description based on publisher supplied metadata and other sources
Subject Vehicular ad hoc networks (Computer networks)
Form Electronic book
Author Hasan, Syed Faraz.
Zabir, Salahuddin Muhammad Salim.
ISBN 9781351780155 (electronic bk)
OTHER TI ProQuest Ebook Central ATO Loan