Limit search to available items
67 results found. sorted by date .
Book Cover
Book
Author Najarian, Kayvan.

Title Biomedical signal and image processing / Kayvan Najarian, Robert Splinter
Edition Second edition
Published Boca Raton, FL : CRC Press, [2012]
©2012

Copies

Location Call no. Vol. Availability
 W'PONDS  610.28 Naj/Bsa 2012  AVAILABLE
Description xxv, 385 pages : illustrations ; 25 cm
Series JIST's help in a hurry series
JIST's help in a hurry series.
Contents Contents note continued: 10.3.Electroencephalogram: Signal of the Brain -- 10.3.1.EEG Frequency Spectrum -- 10.3.2.Significance of EEG -- 10.4.Evoked Potentials -- 10.4.1.Auditory-Evoked Potentials -- 10.4.2.Somatosensory-Evoked Potentials -- 10.4.3.Visual-Evoked Potentials -- 10.4.4.Event-Related Potentials -- 10.5.Diseases of Central Nervous System and EEG -- 10.5.1.Epilepsy -- 10.5.2.Sleep Disorders -- 10.5.3.Brain Tumor -- 10.5.4.Other Diseases -- 10.6.EEG for Assessment of Anesthesia -- 10.7.Processing and Feature Extraction of EEG -- 10.7.1.Sources of Noise on EEG -- 10.7.2.Frequency-Domain Analysis -- 10.7.3.Time-Domain Analysis -- 10.7.3.1.Coherence Analysis -- 10.7.4.Wavelet-Domain Analysis -- 10.8.Summary -- Problems -- ch. 11 Electromyogram -- 11.1.Introduction and Overview -- 11.2.Muscle -- 11.2.1.Motor Unit -- 11.2.2.Muscle Contraction -- 11.2.3.Muscle Force -- 11.3.EMG: Signal of Muscles -- 11.3.1.Significance of EMG -- 11.4.Neuromuscular Diseases and EMG --
Contents note continued: 11.4.1.Abnormal Enervation -- 11.4.2.Pathological Motor Units -- 11.4.3.Abnormal Neuromuscular Transmission in Motor Units -- 11.4.4.Defects in Muscle Cell Membrane -- 11.5.Other Applications of EMG -- 11.6.Processing and Feature Extraction of EMG -- 11.6.1.Sources of Noise on EMG -- 11.6.2.Time-Domain Analysis -- 11.6.3.Frequency- and Wavelet-Domain Analysis -- 11.7.Summary -- Acknowledgment -- Problems -- ch. 12 Other Biomedical Signals -- 12.1.Introduction and Overview -- 12.2.Blood Pressure and Blood Flow -- 12.3.Electrooculogram -- 12.4.Magnetoencephalogram -- 12.5.Respiratory Signals -- 12.6.More Biomedical Signals -- 12.7.Summary -- Problems -- Reference -- pt. III Processing of Biomedical Images -- ch. 13 Principles of Computed Tomography -- 13.1.Introduction and Overview -- 13.1.1.Attenuation Tomography -- 13.1.2.Time-of-Flight Tomography -- 13.1.3.Reflection Tomography -- 13.1.4.Diffraction Tomography --
Contents note continued: 13.2.Formulation of Attenuation Computed Tomography -- 13.2.1.Attenuation Tomography -- 13.3.Fourier Slice Theorem -- 13.4.Summary -- Problems -- ch. 14 X-Ray Imaging and Computed Tomography -- 14.1.Introduction and Overview -- 14.2.Physics of X-Ray -- 14.2.1.Imaging with X-Ray -- 14.2.2.Radiation Dose -- 14.3.Attenuation-Based X-Ray Imaging -- 14.4.X-Ray Detection -- 14.5.Image Quality -- 14.6.Computed Tomography -- 14.7.Biomedical CT Scanners -- 14.8.Diagnostic Applications of X-Ray Imaging -- 14.9.CT Images for Stereotactic Surgeries -- 14.10.CT Registration for Other Image-Guided Interventions -- 14.11.Complications of X-Ray Imaging -- 14.12.Summary -- Problems -- ch. 15 Magnetic Resonance Imaging -- 15.1.Introduction and Overview -- 15.2.Physical and Physiological Principles of MRI -- 15.2.1.Resonance -- 15.3.MR Imaging -- 15.4.Formulation of MRI Reconstruction -- 15.5.Functional MRI -- 15.5.1.BOLD MRI -- 15.6.Applications of MRI and fMRI --
Contents note continued: 15.6.1.fMRI for Monitoring Audio Activities of Brain -- 15.6.2.fMRI for Monitoring Motoneuron Activities of Brain -- 15.6.3.fMRI for Monitoring Visual Cortex Activities -- 15.7.Processing and Feature Extraction of MRI -- 15.7.1.Sources of Noise and Filtering Methods in MRI -- 15.7.2.Feature Extraction -- 15.8.Comparison of MRI with Other Imaging Modalities -- 15.9.Registration with MR Images -- 15.10.Summary -- Problems -- ch. 16 Ultrasound Imaging -- 16.1.Introduction and Overview -- 16.2.Why Ultrasound Imaging? -- 16.3.Generation and Detection of Ultrasound Waves -- 16.4.Physical and Physiological Principles of Ultrasound -- 16.4.1.Fundamental Ultrasound Concepts -- 16.4.2.Wave Equation -- 16.4.3.Attenuation -- 16.4.4.Reflection -- 16.5.Resolution of Ultrasound Imaging Systems -- 16.6.Ultrasound Imaging Modalities -- 16.6.1.Attenuation Tomography -- 16.6.2.Ultrasound Time-of-Flight Tomography -- 16.6.3.Reflection Tomography --
Contents note continued: 16.6.3.1.Doppler Ultrasound Imaging -- 16.7.Modes of Ultrasound Image Representation -- 16.8.Ultrasound Image Artifacts -- 16.9.Three-Dimensional Ultrasound Image Reconstruction -- 16.10.Applications of Ultrasound Imaging -- 16.11.Processing and Feature Extraction of Ultrasonic Images -- 16.12.Image Registration -- 16.13.Comparison of CT, MRI, and Ultrasonic Images -- 16.14.Bioeffects of Ultrasound -- 16.15.Summary -- Problems -- ch. 17 Positron Emission Tomography -- 17.1.Introduction and Overview -- 17.2.Physical and Physiological Principles of PET -- 17.2.1.Production of Radionucleotides -- 17.2.2.Degeneration Process -- 17.3.PET Signal Acquisition -- 17.3.1.Radioactive Detection in PET -- 17.4.PET Image Formation -- 17.5.Significance of PET -- 17.6.Applications of PET -- 17.6.1.Cancer Tumor Detection -- 17.6.2.Functional Brain Mapping -- 17.6.3.Functional Heart Imaging -- 17.6.4.Anatomical Imaging --
Contents note continued: 17.7.Processing and Feature Extraction of PET Images -- 17.7.1.Sources of Noise and Blurring in PET -- 17.7.2.Image Registration with PET -- 17.8.Comparison of CT, MRI, Ultrasonic, and PET Images -- 17.9.Summary -- Problems -- ch. 18 Other Biomedical Imaging Techniques -- 18.1.Introduction and Overview -- 18.2.Optical Microscopy -- 18.3.Fluorescent Microscopy -- 18.4.Confocal Microscopy -- 18.5.Near-Field Scanning Optical Microscopy -- 18.6.Electrical Impedance Imaging -- 18.7.Electron Microscopy -- 18.7.1.Transmission Electron Microscopy -- 18.7.2.Scanning Electron Microscopy -- 18.8.Infrared Imaging -- 18.9.Biometrics -- 18.9.1.Biometrics Methodology -- 18.9.2.Biometrics Using Fingerprints -- 18.9.3.Biometrics Using Retina Scans -- 18.9.4.Biometrics Using Iris Scans -- 18.10.Summary -- Problems
Contents note continued: 2.5.Two-Dimensional Discrete Fourier Transform -- 2.6.Filter Design -- 2.7.Summary -- Problems -- ch. 3 Image Filtering, Enhancement, and Restoration -- 3.1.Introduction and Overview -- 3.2.Point Processing -- 3.2.1.Contrast Enhancement -- 3.2.2.Bit-Level Slicing -- 3.2.3.Histogram Equalization -- 3.3.Mask Processing: Linear Filtering in Space Domain -- 3.3.1.Low-Pass Filters -- 3.3.2.Median Filters -- 3.3.3.Sharpening Spatial Filters -- 3.3.3.1.High-Pass Filters -- 3.3.3.2.High-Boost Filters -- 3.3.3.3.Derivative Filters -- 3.4.Frequency-Domain Filtering -- 3.4.1.Smoothing Filters in Frequency Domain -- 3.4.1.1.Ideal Low-Pass Filter -- 3.4.1.2.Butterworth Low-Pass Filters -- 3.4.2.Sharpening Filters in Frequency Domain -- 3.4.2.1.Ideal High-Pass Filters -- 3.4.2.2.Butterworth High-Pass Filters -- 3.5.Summary -- Problems -- Reference -- ch. 4 Edge Detection and Segmentation of Images -- 4.1.Introduction and Overview -- 4.2.Edge Detection --
Contents note continued: 4.2.1.Sobel Edge Detection -- 4.2.2.Laplacian of Gaussian Edge Detection -- 4.2.3.Canny Edge Detection -- 4.3.Image Segmentation -- 4.3.1.Point Detection -- 4.3.2.Line Detection -- 4.3.3.Region and Object Segmentation -- 4.3.3.1.Region Segmentation Using Luminance Thresholding -- 4.3.3.2.Region Growing -- 4.3.3.3.Quad-Trees -- 4.4.Summary -- Problems -- ch. 5 Wavelet Transform -- 5.1.Introduction and Overview -- 5.2.From FT to STFT -- 5.3.One-Dimensional Continuous Wavelet Transform -- 5.4.One-Dimensional Discrete Wavelet Transform -- 5.4.1.Discrete Wavelet Transform on Discrete Signals -- 5.5.Two-Dimensional Wavelet Transform -- 5.5.1.Two-Dimensional Discrete Wavelet Transform -- 5.6.Main Applications of DWT -- 5.6.1.Filtering and Denoising -- 5.6.2.Compression -- 5.7.Discrete Wavelet Transform in MATLAB® -- 5.8.Summary -- Problems -- ch. 6 Other Signal and Image Processing Methods -- 6.1.Introduction and Overview -- 6.2.Complexity Analysis --
Contents note continued: 6.2.1.Signal Complexity and Signal Mobility -- 6.2.2.Fractal Dimension -- 6.2.3.Wavelet Measures -- 6.2.4.Entropy -- 6.3.Cosine Transform -- 6.4.Introduction to Stochastic Processes -- 6.4.1.Statistical Measures for Stochastic Processes -- 6.4.2.Stationary and Ergodic Stochastic Processes -- 6.4.3.Correlation Functions and Power Spectra -- 6.5.Introduction to Information Theory -- 6.5.1.Entropy -- 6.5.2.Data Representation and Coding -- 6.5.3.Hoffman Coding -- 6.6.Registration of Images -- 6.7.Summary -- Problems -- ch. 7 Clustering and Classification -- 7.1.Introduction and Overview -- 7.2.Clustering versus Classification -- 7.3.Feature Extraction -- 7.3.1.Biomedical and Biological Features -- 7.3.2.Signal and Image Processing Features -- 7.3.2.1.Signal Power in Frequency Bands -- 7.3.2.2.Wavelet Measures -- 7.3.2.3.Complexity Measures -- 7.3.2.4.Geometric Measures -- 7.4.K-Means: A Simple Clustering Method -- 7.5.Bayesian Classifier --
Contents note continued: 7.5.1.Loss Function -- 7.6.Maximum Likelihood Method -- 7.7.Neural Networks -- 7.7.1.Perceptron -- 7.7.2.Sigmoid Neural Networks -- 7.7.2.1.Activation Function -- 7.7.2.2.Backpropagation Algorithm -- 7.7.2.3.Momentum -- 7.7.3.MATLAB® for Neural Networks -- 7.8.Summary -- Problems -- Reference -- pt. II Processing of Biomedical Signals -- ch. 8 Electric Activities of the Cell -- 8.1.Introduction and Overview -- 8.2.Ion Transport in Biological Cells -- 8.2.1.Transmembrane Potential -- 8.3.Electric Characteristics of Cell Membrane -- 8.3.1.Membrane Resistance -- 8.3.2.Membrane Capacitance -- 8.3.3.Cell Membrane's Equivalent Electric Circuit -- 8.3.4.Action Potential -- 8.4.Hodgkin--Huxley Model -- 8.5.Electric Data Acquisition -- 8.5.1.Propagation of Electric Potential as a Wave -- 8.6.Some Practical Considerations on Biomedical Electrodes -- 8.7.Summary -- Problems -- ch. 9 Electrocardiogram -- 9.1.Introduction and Overview --
Contents note continued: 9.2.Function and Structure of the Heart -- 9.2.1.Cardiac Muscle -- 9.2.2.Cardiac Excitation Process -- 9.3.Electrocardiogram: Signal of Cardiovascular System -- 9.3.1.Origin of ECG -- 9.3.2.ECG Electrode Placement -- 9.3.3.Modeling and Representation of ECG -- 9.3.4.Periodicity of ECG: Heart Rate -- 9.4.Cardiovascular Diseases and ECG -- 9.4.1.Atrial Fibrillation -- 9.4.2.Ventricular Arrhythmias -- 9.4.3.Ventricular Tachycardia -- 9.4.4.Ventricular Fibrillation -- 9.4.5.Myocardial Infarction -- 9.4.6.Atrial Flutter -- 9.4.7.Cardiac Reentry -- 9.4.8.Atrioventricular Block -- 9.4.8.1.Main Types of AV Block -- 9.4.9.Wolf--Parkinson--White Syndrome -- 9.4.10.Extrasystole -- 9.5.Processing and Feature Extraction of ECG -- 9.5.1.Time-Domain Analysis -- 9.5.2.Frequency-Domain Analysis -- 9.5.3.Wavelet-Domain Analysis -- 9.6.Summary -- Problems -- ch. 10 Electroencephalogram -- 10.1.Introduction and Overview -- 10.2.Brain and Its Functions --
Machine generated contents note: pt. I Introduction to Digital Signal and Image Processing -- ch. 1 Signals and Biomedical Signal Processing -- 1.1.Introduction and Overview -- 1.2.What Is a "Signal"? -- 1.3.Analog, Discrete, and Digital Signals -- 1.3.1.Analog Signals -- 1.3.2.Discrete Signals -- 1.3.3.Digital Signals -- 1.4.Processing and Transformation of Signals -- 1.5.Signal Processing for Feature Extraction -- 1.6.Some Characteristics of Digital Images -- 1.6.1.Image Capturing -- 1.6.2.Image Representation -- 1.6.3.Image Histogram -- 1.7.Summary -- Problems -- ch. 2 Fourier Transform -- 2.1.Introduction and Overview -- 2.2.One-Dimensional Continuous Fourier Transform -- 2.2.1.Properties of One-Dimensional Fourier Transform -- 2.2.1.1.Signal Shift -- 2.2.1.2.Convolution -- 2.2.1.3.Linear Systems Analysis -- 2.2.1.4.Differentiation -- 2.2.1.5.Scaling Property -- 2.3.Sampling and Nyquist Rate -- 2.4.One-Dimensional Discrete Fourier Transform -- 2.4.1.Properties of DFT --
Summary "Preface The first edition of the book Biomedical Signal and Image Processing was published by CRC Press in 2005. It was used by many universities and educational institutions as a textbook for upper undergraduate level and first year graduate level courses in signal and image processing. It was also used by a number of companies and research institutions as a reference book for their research projects. This highly encouraging impact of the first edition motivated me to look into ways to improve the book and create a second edition. The second edition you have in hand has the following improvements compared to the first edition: - A number of editorial corrections have been made to address the typos, grammatical errors, and ambiguities in some mathematical equations. - Many examples have been added to almost all chapters, of which the majority are MATLABʼ examples, further illustrating the concepts described in the text. - Further explanations and justifications have been provided for some signal and image processing concepts that may have needed more illustration. Finally, I would like to thank all the people who contacted me and my coauthor, Dr. Splinter, and shared with us their thoughts and ideas regarding this book. I hope that you find the second edition even more useful than the first one! Kayvan Najarian Virginia Commonwealth University Richmond, Virginia For MATLABʼ and Simulinkʼ product information, please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA, 01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com Web: www.mathworks.com"--Provided by publisher
Notes Formerly CIP. Uk
Previous ed.: 2006
Bibliography Includes bibliographical references and index
Subject Biomedical engineering.
Image processing.
Imaging systems in medicine.
Job hunting.
Résumés (Employment)
Signal processing.
Image Processing, Computer-Assisted.
Signal Processing, Computer-Assisted.
Author Splinter, Robert.
LC no. 2012008926
ISBN 1439870330 (hardcover : alk. paper)
9781439870334 (hardcover : alk. paper)