Limit search to available items
47 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Casey, Michael, 1948- author.

Title Radial flow turbocompressors : design, analysis, and applications / Michael Casey, Chris Robinson
Published Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2021
©2021

Copies

Description 1 online resource
Contents Cover -- Half-title -- Title page -- Copyright information -- Dedication -- Contents -- Credits -- Introduction -- Preface -- Acknowledgements -- Conventions and Nomenclature -- Conventions -- Nomenclature -- Letters -- Symbols -- Subscripts -- Superscripts -- 1 Introduction to Radial Flow Turbocompressors -- 1.1 Overview -- 1.1.1 Introduction -- 1.1.2 Learning Objectives -- 1.2 Definition of Turbomachinery -- 1.2.1 Open System -- 1.2.2 Continuous Energy Transfer by Flow over Blades Rotating around an Axis -- 1.2.3 Aerodynamic -- 1.2.4 Principle of Operation -- 1.3 Classification of Turbomachines -- 1.3.1 Power Consuming and Power Producing Machines -- 1.3.2 Thermal and Hydraulic Machines -- 1.3.3 Acceleration and Deceleration of the Flow -- 1.3.4 Flow Direction -- 1.3.5 Degree of Reaction -- 1.3.6 Boundary of the Flow Field -- 1.4 Short History of Thermal Turbomachines -- 1.4.1 The Prefix Turbo -- 1.4.2 Historical Overview -- 1.5 Components of Radial Flow Turbocompressors -- 1.5.1 The Single-Stage Radial Flow Turbocompressor Stage -- 1.5.2 Multistage Configurations -- 1.5.3 Impeller Types -- 1.5.4 Features of Multistage Radial Turbocompressors -- 1.6 Applications of Centrifugal Turbocompressors -- 1.6.1 Turbochargers and Superchargers -- 1.6.2 Compressed Air -- 1.6.3 Industrial Wastewater Treatment -- 1.6.4 Air Conditioning, Air Extraction and Building Ventilation Applications -- 1.6.5 Vacuum Compressors -- 1.6.6 Vapour Compression Refrigeration and Heat Pumps -- 1.6.7 Gas Turbines for Power Generation -- 1.6.8 Automotive Gas Turbines -- 1.6.9 Jet Propulsion Gas Turbines -- 1.6.10 The Auxiliary Power Unit -- 1.6.11 Oil, Gas and Chemical Applications -- 1.6.12 Fluid Catalytic Cracking Compressors -- 1.6.13 Air Separation Plants -- 1.6.14 Synthetic Fuels, Coal Liquefaction and Gas to Liquid -- 1.6.15 Carbon Capture and Storage (CSS)
1.6.16 Compressed Air Energy Storage -- 1.6.17 Centrifugal Steam Compressors for Mechanical Vapour Recompression -- 1.6.18 Fuel Cells -- 1.6.19 Microcompressors -- 1.6.20 Medical Applications -- 1.7 Some Other Publications -- 1.7.1 Books -- 1.7.2 Technical Conferences and Journals -- 2 Energy Transfer -- 2.1 Overview -- 2.1.1 Introduction -- 2.1.2 Learning Objectives -- 2.2 The Euler Turbine Equation -- 2.2.1 Newton's Laws of Motion -- 2.2.2 The Euler Turbine Equation -- 2.2.3 First Insights from the Euler Turbine Equation -- 2.2.4 Velocity Triangles -- 2.2.5 Centrifugal Effect and Degree of Reaction -- 2.3 The First Law of Thermodynamics -- 2.3.1 Thermodynamic Concepts -- 2.3.2 Definition of a System -- 2.3.3 Thermodynamic Properties -- 2.3.4 Quasiequilibrium and Reversible Processes -- 2.3.5 Sign Convention -- 2.3.6 The First Law Applied to a Fluid Element -- 2.3.7 First Law Applied to a Control Volume -- 2.4 The Steady Flow Energy Equation -- 2.4.1 Application of the SFEE -- 2.4.2 Definition of Static and Total Properties -- 2.4.3 Total Conditions -- 2.4.4 Special Cases of the Steady Flow Energy Equation -- 2.5 The Second Law of Thermodynamics -- 2.5.1 Entropy -- 2.5.2 The Gibbs Equation -- 2.6 Energy Transfer in Radial Turbocompressors -- 2.6.1 Combination of the First and Second Laws -- 2.6.2 The Reversible Steady Flow Shaft Work -- 2.6.3 Use of the First and the Second Laws in Efficiency Definition -- 2.6.4 Rothalpy -- 2.7 Different Ideal Compression Processes -- 2.7.1 The Isentropic Process -- 2.7.2 Diagrams Describing Changes of State in Radial Compressors -- 2.7.3 The Polytropic Process -- 2.7.4 Special Features of Polytropic Processes -- 2.8 The Aerodynamic Work -- 2.8.1 Flow Work, Aerodynamic Work and Displacement Work -- 2.8.2 Effect of the Gas Properties on the Aerodynamic Work
2.8.3 The Effect of the Efficiency on the Aerodynamic Work -- 2.9 The Compressor Stage as the Sum of Its Components -- 3 Equations of State -- 3.1 Overview -- 3.1.1 Introduction -- 3.1.2 Learning Objectives -- 3.2 Equations of State for Perfect Fluids -- 3.2.1 Terminology -- 3.2.2 Perfect Gas -- 3.2.3 Idealised Incompressible Fluid -- 3.3 Equations of State for Real Gases -- 3.3.1 Real Gases with a Constant Compressibility Factor Z -- 3.3.2 Principle of Corresponding States -- 3.3.3 Van der Waals Equation -- 3.3.4 Cubic Equations of State -- 3.3.5 Virial Equations of State -- 3.3.6 Multiple Variable Equations of State -- 3.3.7 Real Gas Mixtures -- 3.3.8 Software Packages for Real Gases -- 3.4 The Aungier-Redlich-Kwong Cubic Equation of State -- 3.4.1 Aungier-Redlich-Kwong -- 3.4.2 Departure Functions for the Caloric Equation of State -- 3.4.3 Temperature Dependence of the Specific Heat -- 3.5 Isentropic and Polytropic Processes with Real Gases -- 3.5.1 Isentropic Process -- 3.5.2 Polytropic Process -- 3.6 The Aerodynamic Work with Real Gases -- 3.6.1 Schultz Method for the Polytropic Head -- 3.6.2 Mallen and Saville Method for the Polytropic Head -- 3.6.3 Huntington Method for the Polytropic Head -- 3.6.4 International Standards -- 4 Efficiency Definitions for Compressors -- 4.1 Overview -- 4.1.1 Introduction -- 4.1.2 Learning Objectives -- 4.2 Compressor Efficiency -- 4.2.1 Issues with the Definition of Efficiency -- 4.2.2 The Ideal Reversible Reference Process -- 4.2.3 The Minimum Work of Compression -- 4.3 Isentropic Efficiency -- 4.3.1 The Static-Static Isentropic Efficiency -- 4.3.2 The Total-Total Isentropic Efficiency -- 4.3.3 The Total-Static Isentropic Efficiency -- 4.3.4 Comparison of Total-Total and Total-Static Isentropic Efficiencies -- 4.3.5 Evolution of the Isentropic Efficiency in the Compressor
4.3.6 Divergence of Constant Pressure Lines -- 4.4 Polytropic Efficiency -- 4.4.1 The Polytropic Process -- 4.4.2 Preheat Effect -- 4.4.3 Polytropic Efficiency in Terms of Entropy Changes -- 4.4.4 Static-Static Polytropic Efficiency -- 4.4.5 Total-Total Polytropic Efficiency -- 4.4.6 Total-Static Polytropic Efficiency -- 4.4.7 Stage and Component Polytropic Efficiencies -- 4.5 The Impeller Wheel Efficiency -- 4.6 External Losses and Sideloads -- 4.7 Efficiency in Diabatic Processes -- 4.7.1 Diabatic Compression Processes -- 4.7.2 The Effect of Heat Transfer in Turbocharger Compressors -- 4.7.3 Diabatic Polytropic Efficiency -- 4.7.4 Isothermal Efficiency -- 4.8 Efficiency Definitions for Real Gases -- 5 Fluid Mechanics -- 5.1 Overview -- 5.1.1 Introduction -- 5.1.2 Learning Objectives -- 5.2 The Laws of Fluid Mechanics -- 5.2.1 Internal Flows in Compressors -- 5.2.2 Fundamentals of Fluid Motion -- 5.2.3 Continuity Equation -- 5.2.4 Momentum Equation -- 5.2.5 Moment of Momentum Equation -- 5.2.6 Navier-Stokes and Euler Equations -- 5.2.7 Average Values of Complex Flows -- 5.3 Pressure Gradients in Fluid Flows -- 5.3.1 Euler Equation of Motion along a Streamline -- 5.3.2 Euler Equation of Motion Normal to a Streamline -- 5.3.3 Swirling Flow in an Annulus -- 5.3.4 The Simple Radial Equilibrium Equation for an Axial Flow -- 5.3.5 Radial Equilibrium for the Inlet of a Radial Impeller -- 5.3.6 Pressure Gradients in the Circumferential Direction -- 5.4 Coriolis and Centrifugal Forces in Impellers -- 5.4.1 Coriolis and Centrifugal Forces -- 5.4.2 Effect of the Coriolis Force on Pressure Gradients -- 5.4.3 The Relative Eddy -- 5.4.4 Slip Velocity in Radial Compressors -- 5.5 Boundary Layers and End-Wall Flows -- 5.5.1 The Boundary Layers -- 5.5.2 Boundary Layer Thickness -- 5.5.3 Displacement Thickness and Boundary Layer Blockage
5.5.4 Mass-Flow Thickness, Momentum Thickness and Energy Thickness -- 5.5.5 Boundary Layer Structure in the Meridional Direction -- 5.5.6 Boundary Layer Transition -- 5.5.7 Boundary Layer Separation -- 5.5.8 Laminar Separation Bubble -- 5.5.9 Boundary Layer Structure Normal to the Blade Surface -- 5.5.10 Law of the Wall -- 5.5.11 End-Wall Boundary Layer -- 5.5.12 Turbulent Boundary Layers on Rough and Smooth Surfaces -- 5.5.13 Friction Factor for Fully Developed Pipe Flow with Roughness -- 5.6 Secondary Flows -- 5.6.1 Generation of Secondary Flows -- 5.6.2 Secondary Flows in Radial Compressors -- 5.7 Tip Clearance Flows -- 5.7.1 Structure of the Leakage Flow Pattern -- 5.7.2 Effect of Blade-to-Blade Loading -- 5.8 Jet-Wake Flow in Impellers -- 5.8.1 Early Descriptions of the Jet-Wake Flow -- 5.8.2 Breakthrough in Understanding through Laser Measurements -- 5.8.3 A Modern Synthesis -- 5.8.4 Conclusions -- 6 Gas Dynamics -- 6.1 Overview -- 6.1.1 Introduction -- 6.1.2 Learning Objectives -- 6.2 Gas Dynamics of Ideal Gases -- 6.2.1 Background -- 6.2.2 One-Dimensional Flow in Variable Area Ducts -- 6.2.3 The Continuity Equation in Compressible Flow -- 6.2.4 Corrected Flow per Unit Area -- 6.2.5 Choked Flow -- 6.2.6 Variation of Pressure in a Nozzle at Different Back Pressures -- 6.3 Shock and Expansion Waves -- 6.3.1 Normal Shock Waves -- 6.3.2 Oblique Shock Waves -- 6.3.3 Prandtl-Meyer Expansion Waves -- 6.4 Shock Structure in Transonic Compressors -- 6.4.1 Detached Curved Shock on a Leading Edge of a Blade Row -- 6.4.2 Unique Incidence -- 6.4.3 Variation of Shock Structure with Operating Point -- 6.5 Gas Dynamics of Real Gases -- 6.5.1 Background -- 6.5.2 Ratio of Specific Heats in a Real Gas -- 6.5.3 Isentropic Exponents -- 6.5.4 Speed of Sound in a Real Gas -- 6.5.5 Isentropic Flow Process in a Real Gas -- 6.5.6 Corrected Mass Flow per Unit Area
Summary "An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience the authors provide: Descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with numerous illustrative examples. Wide coverage of all types of radial compressor over a range of applications unified by the consistent use of dimensional analysis. The methods needed to analyse the performance, flow and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field as well as those just entering it"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes Description based on online resource; title from digital title page (viewed on August 10, 2021)
Subject Centrifugal compressors.
Centrifugal compressors
Form Electronic book
Author Robinson, Chris, 1959- author.
LC no. 2020046836
ISBN 9781108241663
1108241662