Limit search to available items
427 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Dicks, Andrew, author

Title Fuel cell systems explained / Andrew L Dicks, Griffith University, Brisbane, Australia, David A J Rand, CSIRO Energy Flagship, Melbourne, Australia
Edition Third edition
Published Hoboken, NJ, USA : Wiley, [2018]
Online access available from:
ProQuest Ebook Central    View Resource Record  

Copies

Description 1 online resource
Contents Intro -- Title Page -- Copyright Page -- Contents -- Brief Biographies -- Preface -- Acknowledgments -- Acronyms and Initialisms -- Symbols and Units -- Chapter 1 Introducing Fuel Cells -- 1.1 Historical Perspective -- 1.2 Fuel-Cell Basics -- 1.3 Electrode Reaction Rates -- 1.4 Stack Design -- 1.5 Gas Supply and Cooling -- 1.6 Principal Technologies -- 1.7 Mechanically Rechargeable Batteries and Other Fuel Cells -- 1.7.1 Metal-Air Cells -- 1.7.2 Redox Flow Cells -- 1.7.3 Biological Fuel Cells -- 1.8 Balance-of-Plant Components -- 1.9 Fuel-Cell Systems: Key Parameters -- 1.10 Advantages and Applications -- Further Reading -- Chapter 2 Efficiency and Open-Circuit Voltage -- 2.1 Open-Circuit Voltage: Hydrogen Fuel Cell -- 2.2 Open-Circuit Voltage: Other Fuel Cells and Batteries -- 2.3 Efficiency and Its Limits -- 2.4 Efficiency and Voltage -- 2.5 Influence of Pressure and Gas Concentration -- 2.5.1 Nernst Equation -- 2.5.2 Hydrogen Partial Pressure -- 2.5.3 Fuel and Oxidant Utilization -- 2.5.4 System Pressure -- 2.6 Summary -- Further Reading -- Chapter 3 Operational Fuel-Cell Voltages -- 3.1 Fundamental Voltage: Current Behaviour -- 3.2 Terminology -- 3.3 Fuel-Cell Irreversibilities -- 3.4 Activation Losses -- 3.4.1 The Tafel Equation -- 3.4.2 The Constants in the Tafel Equation -- 3.4.3 Reducing the Activation Overpotential -- 3.5 Internal Currents and Fuel Crossover -- 3.6 Ohmic Losses -- 3.7 Mass-Transport Losses -- 3.8 Combining the Irreversibilities -- 3.9 The Electrical Double-Layer -- 3.10 Techniques for Distinguishing Irreversibilities -- 3.10.1 Cyclic Voltammetry -- 3.10.2 AC Impedance Spectroscopy -- 3.10.3 Current Interruption -- Further Reading -- Chapter 4 Proton-Exchange Membrane Fuel Cells -- 4.1 Overview -- 4.2 Polymer Electrolyte: Principles of Operation -- 4.2.1 Perfluorinated Sulfonic Acid Membrane
10.2.1 Petroleum -- 10.2.2 Petroleum from Tar Sands, Oil Shales and Gas Hydrates -- 10.2.3 Coal and Coal Gases -- 10.2.4 Natural Gas and Coal-Bed Methane (Coal-Seam Gas) -- 10.3 Biofuels -- 10.4 Basics of Fuel Processing -- 10.4.1 Fuel-Cell Requirements -- 10.4.2 Desulfurization -- 10.4.3 Steam Reforming -- 10.4.4 Carbon Formation and Pre-Reforming -- 10.4.5 Internal Reforming -- 10.4.5.1 Indirect Internal Reforming (IIR) -- 10.4.5.2 Direct Internal Reforming (DIR) -- 10.4.6 Direct Hydrocarbon Oxidation -- 10.4.7 Partial Oxidation and Autothermal Reforming -- 10.4.8 Solar-Thermal Reforming -- 10.4.9 Sorbent-Enhanced Reforming -- 10.4.10 Hydrogen Generation by Pyrolysis or Thermal Cracking of Hydrocarbons -- 10.4.11 Further Fuel Processing: Removal of Carbon Monoxide -- 10.5 Membrane Developments for Gas Separation -- 10.5.1 Non-Porous Metal Membranes -- 10.5.2 Non-Porous Ceramic Membranes -- 10.5.3 Porous Membranes -- 10.5.4 Oxygen Separation -- 10.6 Practical Fuel Processing: Stationary Applications -- 10.6.1 Industrial Steam Reforming -- 10.6.2 Fuel-Cell Plants Operating with Steam Reforming of Natural Gas -- 10.6.3 Reformer and Partial Oxidation Designs -- 10.6.3.1 Conventional Packed-Bed Catalytic Reactors -- 10.6.3.2 Compact Reformers -- 10.6.3.3 Plate Reformers and Microchannel Reformers -- 10.6.3.4 Membrane Reactors -- 10.6.3.5 Non-Catalytic Partial Oxidation Reactors -- 10.6.3.6 Catalytic Partial Oxidation Reactors -- 10.7 Practical Fuel Processing: Mobile Applications -- 10.8 Electrolysers -- 10.8.1 Operation of Electrolysers -- 10.8.2 Applications -- 10.8.3 Electrolyser Efficiency -- 10.8.4 Photoelectrochemical Cells -- 10.9 Thermochemical Hydrogen Production and Chemical Looping -- 10.9.1 Thermochemical Cycles -- 10.9.2 Chemical Looping -- 10.10 Biological Production of Hydrogen -- 10.10.1 Introduction
4.2.2 Modified Perfluorinated Sulfonic Acid Membranes -- 4.2.3 Alternative Sulfonated and Non-Sulfonated Membranes -- 4.2.4 Acid-Base Complexes and Ionic Liquids -- 4.2.5 High-Temperature Proton Conductors -- 4.3 Electrodes and Electrode Structure -- 4.3.1 Catalyst Layers: Platinum-Based Catalysts -- 4.3.2 Catalyst Layers: Alternative Catalysts for Oxygen Reduction -- 4.3.2.1 Macrocyclics -- 4.3.2.2 Chalcogenides -- 4.3.2.3 Conductive Polymers -- 4.3.2.4 Nitrides -- 4.3.2.5 Functionalized Carbons -- 4.3.2.6 Heteropolyacids -- 4.3.3 Catalyst Layer: Negative Electrode -- 4.3.4 Catalyst Durability -- 4.3.5 Gas-Diffusion Layer -- 4.4 Water Management -- 4.4.1 Hydration and Water Movement -- 4.4.2 Air Flow and Water Evaporation -- 4.4.3 Air Humidity -- 4.4.4 Self-Humidified Cells -- 4.4.5 External Humidification: Principles -- 4.4.6 External Humidification: Methods -- 4.5 Cooling and Air Supply -- 4.5.1 Cooling with Cathode Air Supply -- 4.5.2 Separate Reactant and Cooling Air -- 4.5.3 Water Cooling -- 4.6 Stack Construction Methods -- 4.6.1 Introduction -- 4.6.2 Carbon Bipolar Plates -- 4.6.3 Metal Bipolar Plates -- 4.6.4 Flow-Field Patterns -- 4.6.5 Other Topologies -- 4.6.6 Mixed Reactant Cells -- 4.7 Operating Pressure -- 4.7.1 Technical Issues -- 4.7.2 Benefits of High Operating Pressures -- 4.7.2.1 Current -- 4.7.3 Other Factors -- 4.8 Fuel Types -- 4.8.1 Reformed Hydrocarbons -- 4.8.2 Alcohols and Other Liquid Fuels -- 4.9 Practical and Commercial Systems -- 4.9.1 Small-Scale Systems -- 4.9.2 Medium-Scale for Stationary Applications -- 4.9.3 Transport System Applications -- 4.10 System Design, Stack Lifetime and Related Issues -- 4.10.1 Membrane Degradation -- 4.10.2 Catalyst Degradation -- 4.10.3 System Control -- 4.11 Unitized Regenerative Fuel Cells -- Further Reading -- Chapter 5 Alkaline Fuel Cells -- 5.1 Principles of Operation
5.2 System Designs -- 5.2.1 Circulating Electrolyte Solution -- 5.2.2 Static Electrolyte Solution -- 5.2.3 Dissolved Fuel -- 5.2.4 Anion-Exchange Membrane Fuel Cells -- 5.3 Electrodes -- 5.3.1 Sintered Nickel Powder -- 5.3.2 Raney Metals -- 5.3.3 Rolled Carbon -- 5.3.4 Catalysts -- 5.4 Stack Designs -- 5.4.1 Monopolar and Bipolar -- 5.4.2 Other Stack Designs -- 5.5 Operating Pressure and Temperature -- 5.6 Opportunities and Challenges -- Further Reading -- Chapter 6 Direct Liquid Fuel Cells -- 6.1 Direct Methanol Fuel Cells -- 6.1.1 Principles of Operation -- 6.1.2 Electrode Reactions with a Proton-Exchange Membrane Electrolyte -- 6.1.3 Electrode Reactions with an Alkaline Electrolyte -- 6.1.4 Anode Catalysts -- 6.1.5 Cathode Catalysts -- 6.1.6 System Designs -- 6.1.7 Fuel Crossover -- 6.1.8 Mitigating Fuel Crossover: Standard Techniques -- 6.1.9 Mitigating Fuel Crossover: Prospective Techniques -- 6.1.10 Methanol Production -- 6.1.11 Methanol Safety and Storage -- 6.2 Direct Ethanol Fuel Cells -- 6.2.1 Principles of Operation -- 6.2.2 Ethanol Oxidation, Catalyst and Reaction Mechanism -- 6.2.3 Low-Temperature Operation: Performance and Challenges -- 6.2.4 High-Temperature Direct Ethanol Fuel Cells -- 6.3 Direct Propanol Fuel Cells -- 6.4 Direct Ethylene Glycol Fuel Cells -- 6.4.1 Principles of Operation -- 6.4.2 Ethylene Glycol: Anodic Oxidation -- 6.4.3 Cell Performance -- 6.5 Formic Acid Fuel Cells -- 6.5.1 Formic Acid: Anodic Oxidation -- 6.5.2 Cell Performance -- 6.6 Borohydride Fuel Cells -- 6.6.1 Anode Catalysts -- 6.6.2 Challenges -- 6.7 Application of Direct Liquid Fuel Cells -- Further Reading -- Chapter 7 Phosphoric Acid Fuel Cells -- 7.1 High-Temperature Fuel-Cell Systems -- 7.2 System Design -- 7.2.1 Fuel Processing -- 7.2.2 Fuel Utilization -- 7.2.3 Heat-Exchangers -- 7.2.3.1 Designs -- 7.2.3.2 Exergy Analysis -- 7.2.3.3 Pinch Analysis
7.3 Principles of Operation -- 7.3.1 Electrolyte -- 7.3.2 Electrodes and Catalysts -- 7.3.3 Stack Construction -- 7.3.4 Stack Cooling and Manifolding -- 7.4 Performance -- 7.4.1 Operating Pressure -- 7.4.2 Operating Temperature -- 7.4.3 Effects of Fuel and Oxidant Composition -- 7.4.4 Effects of Carbon Monoxide and Sulfur -- 7.5 Technological Developments -- Further Reading -- Chapter 8 Molten Carbonate Fuel Cells -- 8.1 Principles of Operation -- 8.2 Cell Components -- 8.2.1 Electrolyte -- 8.2.2 Anode -- 8.2.3 Cathode -- 8.2.4 Non-Porous Components -- 8.3 Stack Configuration and Sealing -- 8.3.1 Manifolding -- 8.3.2 Internal and External Reforming -- 8.4 Performance -- 8.4.1 Influence of Pressure -- 8.4.2 Influence of Temperature -- 8.5 Practical Systems -- 8.5.1 Fuel Cell Energy (USA) -- 8.5.2 Fuel Cell Energy Solutions (Europe) -- 8.5.3 Facilities in Japan -- 8.5.4 Facilities in South Korea -- 8.6 Future Research and Development -- 8.7 Hydrogen Production and Carbon Dioxide Separation -- 8.8 Direct Carbon Fuel Cell -- Further Reading -- Chapter 9 Solid Oxide Fuel Cells -- 9.1 Principles of Operation -- 9.1.1 High-Temperature (HT) Cells -- 9.1.2 Low-Temperature (IT) Cells -- 9.2 Components -- 9.2.1 Zirconia Electrolyte for HT-Cells -- 9.2.2 Electrolytes for IT-Cells -- 9.2.2.1 Ceria -- 9.2.2.2 Perovskites -- 9.2.2.3 Other Materials -- 9.2.3 Anodes -- 9.2.3.1 Nickel-YSZ -- 9.2.3.2 Cathode -- 9.2.3.3 Mixed Ionic-Electronic Conductor Anode -- 9.2.4 Cathode -- 9.2.5 Interconnect Material -- 9.2.6 Sealing Materials -- 9.3 Practical Design and Stacking Arrangements -- 9.3.1 Tubular Design -- 9.3.2 Planar Design -- 9.4 Performance -- 9.5 Developmental and Commercial Systems -- 9.5.1 Tubular SOFCs -- 9.5.2 Planar SOFCs -- 9.6 Combined-Cycle and Other Systems -- Further Reading -- Chapter 10 Fuels for Fuel Cells -- 10.1 Introduction -- 10.2 Fossil Fuels
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Fuel cells
Fuel cells.
TECHNOLOGY & ENGINEERING -- Mechanical.
Form Electronic book
Author Rand, D. A. J. (David Anthony James), 1942- author
LC no. 2017058097
ISBN 111870696X
1118706978
1118706986
1118706994
9781118706961 (epub)
9781118706978 (pdf)
9781118706985
9781118706992
(cloth)