Limit search to available items
Did you mean Plant microprobe? more »
38 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Upadhyay, Santosh Kumar

Title Plants As Bioreactors for Industrial Molecules
Published Newark : John Wiley & Sons, Incorporated, 2023
©2023

Copies

Description 1 online resource (547 pages)
Contents Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Plants as Bioreactors: An Overview -- 1.1 Introduction -- 1.2 Factors Controlling the Production of Recombinant Protein -- 1.2.1 Choice of the Host Species -- 1.2.2 Optimization of Expression of Recombinant Protein -- 1.2.3 Downstream Processing -- 1.3 Recombinant Proteins in Plants -- 1.3.1 Pharmaceutical Proteins -- 1.3.2 Vaccine Antigens -- 1.3.3 Antibodies -- 1.3.4 Nutritional Molecules -- 1.3.5 Other Valuable Products -- 1.4 Conclusions -- References -- Chapter 2 Molecular Farming for the Production of Pharmaceutical Proteins in Plants -- 2.1 Introduction -- 2.2 Plant as an Expression Platform -- 2.3 Plant-Derived Recombinant Proteins -- 2.4 Engineering Strategies Utilized for Recombinant Pharmaceutical Protein Production in Plants -- 2.4.1 Nuclear Transformation -- 2.4.2 Chloroplast Transformation -- 2.5 Pharmaceutical Protein Developed Using Plant Expression Platform -- 2.6 Perspectives -- 2.7 Conclusion -- References -- Chapter 3 3Plants as Edible Vaccine -- 3.1 Introduction -- 3.2 Mechanism of Action -- 3.3 Edible Plant Vaccines -- 3.3.1 Candidate Plants and Selection of Desired Gene -- 3.4 Production of Edible Vaccine (Plant Transformation) -- Direct Gene Delivery Method (Physical) -- 3.4.3 Indirect Gene Delivery -- 3.5 Plant Species Used as Vaccine Models -- 3.5.1 Potato -- 3.5.2 Rice -- 3.5.3 Banana -- 3.5.4 Tomato -- 3.5.5 Lettuce -- 3.5.6 Maize -- 3.5.7 Carrot -- 3.5.8 Alfalfa -- 3.6 Challenges -- 3.7 Conclusion -- Ackowledgments -- References -- Chapter 4 Plant Cell Culture for Biopharmaceuticals -- 4.1 Introduction -- 4.2 Plant Cultures -- 4.2.1 Plant Cell Cultures -- 4.2.2 Plant Tissue Culture -- 4.2.3 Plant Organ Cultures -- 4.3 Conditions for Plant Cell, Tissue, and Organ Culture
4.3.1 Culture Medium -- 4.3.2 pH -- 4.4 Types of Plant Cell, Tissue, and Organ Culture -- 4.4.1 Embryo Culture -- 4.4.2 Somatic Embryogenesis -- 4.4.3 Genetic Transformation -- 4.4.4 Meristem Tip Culture -- 4.4.5 Organogenesis -- 4.4.6 Callus Culture (Callogenesis) -- 4.4.7 Adventitious Root/Hairy Root Culture (rhizogenesis) -- 4.4.8 Suspension Culture -- 4.4.9 Protoplast Fusion -- 4.4.10 Haploid Production -- 4.4.11 Germplasm Conservation -- 4.5 The Techniques Used in Plant Culture -- 4.5.1 Micropropagation in Medicinal Plants -- 4.5.2 Elicitation -- 4.5.3 Transformed Tissue Cultures -- 4.5.4 Metabolic Engineering -- 4.6 Applications of Plant Cultures -- 4.7 Biopharmaceuticals -- 4.7.1 Biopharmaceuticals from Plants -- 4.7.2 The Effects of Production, Safety, and Efficacy -- 4.8 Conclusion -- References -- Chapter 5 Microalgal Bioreactors for Pharmaceuticals Production -- 5.1 Introduction -- 5.2 Microalgae Strains Selection -- 5.3 Microalgae Cultivation -- 5.3.1 Factors Affecting the Growth and Productivity of Microalgae -- 5.3.2 Methods and Systems for Microalgae Cultivation -- 5.4 Acquiring Biopharmaceuticals from Microalgae's -- 5.4.1 Microalgae Harvesting -- 5.4.2 Biomass Dehydratation -- 5.4.3 Cell Disruption for Bioproducts Extraction -- 5.5 Microalgal Compounds and their Pharmaceutical Applications -- 5.5.1 Carotenoids -- 5.5.2 Polyunsaturated Fatty Acids -- 5.5.3 Polysaccharides, Vitamins, and Minerals -- 5.5.4 Proteins -- 5.6 Conclusions -- References -- Chapter 6 Micropropagation for the Improved Production of Secondary Metabolites -- 6.1 Introduction -- 6.2 Micropropagation for Production of Secondary Metabolites -- 6.3 Strategies to Improve Secondary Metabolite Production -- 6.3.1 Optimizing Culture Conditions -- 6.3.2 Selecting High-Producing Cell Lines -- 6.3.3 Organ Cultures -- 6.3.4 Precursor Feeding -- 6.3.5 Elicitation
6.3.6 Immobilization -- 6.3.7 Permeabilization -- 6.3.8 Genetic Transformation: Hairy Root Cultures and Shooty Teratomas -- 6.3.9 Biotransformation -- 6.3.10 Metabolic Engineering -- 6.3.11 Plant Bioreactors and Scale-up -- 6.4 Conclusions -- References -- Chapter 7 Metabolic Engineering for Carotenoids Enrichment of Plants -- 7.1 Background -- 7.2 Classification of Carotenoid Pigments -- 7.2.1 Carotenoid Hydrocarbons -- 7.2.2 Xanthophylls -- 7.2.3 Carotenoid Ketones -- 7.2.4 Carotenoid Acids -- 7.3 Aspects of the Mechanism of Carotenoid Biosynthesis -- 7.4 Concluding Remarks and Future Perspectives -- References -- Chapter 8 Plant Genome Engineering for Improved Flavonoids Production -- 8.1 Background -- 8.2 Structure, Diversity, and Subgroups -- 8.3 Flavonoid Biosynthesis -- 8.4 The Mechanism of Action of Flavonoids -- 8.5 The Role of Flavonoids in Food and Medicine -- 8.6 Concluding Remarks and Future Perspectives -- References -- Chapter 9 Antibody Production in Plants -- 9.1 Introduction -- 9.2 How Are Antigens Expressed in Plants? -- 9.2.1 Transient Expression of Antigens -- 9.2.2 Plant Virus Fusion Proteins -- 9.3 Plant-Derived Antibodies: Are There any Alternative Approaches? -- 9.4 Antibody Production in Plants: Advantages and Concerns -- 9.5 Conclusion and Prospects -- References -- Chapter 10 Metabolic Engineering of Essential Micronutrients in Plants to Ensure Food Security -- 10.1 Introduction -- 10.2 Metabolic Engineering of Crops for Increased Nutritional Value -- 10.2.1 Iron -- 10.2.2 Iodine -- 10.2.3 Zinc -- 10.2.4 Vitamin A -- 10.2.5 Vitamin B6 -- 10.2.6 Vitamin B9 -- 10.2.7 Vitamin E -- 10.3 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 11 Plant Hairy Roots as Biofactory for the Production of Industrial Metabolites -- 11.1 Introduction -- 11.2 Types of Metabolites and Industrial Metabolites
11.3 Secondary Metabolites -- 11.4 Importance of Secondary Metabolites -- 11.5 Enhancement of Secondary Metabolites -- 11.6 Hairy Roots -- 11.6.1 Hairy Roots -- 11.6.2 Hairy Roots in Plants and In vitro Production of Secondary Metabolites -- 11.7 Initiation of Hairy Root Cultures -- 11.7.1 Formation of Highly Proliferative Hairy Roots -- 11.7.2 Agrobacterium rhizogenes for Hairy Root Production and as a Biotechnology Tools -- 11.8 Large-Scale Production of Secondary Metabolites -- 11.9 Strategies Used In vitro -- 11.9.1 Why Hairy Root Culture? -- 11.10 Plants as Bioreactors -- 11.11 A Case Study -- 11.12 Conclusion -- References -- Chapter 12 Microalgae as Cell Factories for Biofuel and Bioenergetic Precursor Molecules -- 12.1 Introduction -- 12.2 Microalgae that Produce Bioenergy and Biofuel Molecules -- 12.3 Biosynthesis of Molecules for Bioenergy and Biofuels in Microalgae -- 12.4 Biohydrogen Production -- 12.5 Starch Biosynthesis -- 12.6 Lipid Biosynthesis -- 12.7 Biochemical Regulation of BBPM Associated with Nutritional Conditions -- 12.8 Physical and Chemical Factors Promote the Accumulation of Molecules for Bioenergy and Biofuels -- 12.9 Light Intensity -- 12.10 Salts -- 12.11 Use of Organic and Inorganic Carbon Sources -- 12.12 Agitation -- 12.13 Photobioreactors to Produce Bioenergy and Biofuels -- 12.14 Open Pond Cultivation Systems -- 12.15 Closed Systems -- 12.16 Hybrid Systems -- 12.17 Conclusions -- References -- Chapter 13 Metabolic Engineering for Value Addition in Plant-Based Lipids/Fatty Acids -- 13.1 Introduction -- 13.2 Plant Lipids -- 13.3 TAG Synthesis in Plants -- 13.3.1 Fatty Acid Synthesis -- 13.3.2 TAG Biosynthesis -- 13.3.3 Lipid Droplets Biogenesis -- 13.3.4 Wax Esters Synthesis -- 13.4 Regulatory Factors Involved in TAG Synthesis -- 13.5 Metabolic Engineering for Lipid/Fatty Acid Synthesis
13.5.1 Increasing Oil Accumulation in Plants -- 13.5.2 Improving the Quality of Oil by Altering the Fatty Acid Profile -- 13.6 Conclusions -- References -- Chapter 14 Plants as Bioreactors for the Production of Biopesticides -- 14.1 Introduction -- 14.2 Plant Metabolic Engineering for the Production of EOs and their Pure Compounds -- 14.3 Bioactivity of EOs -- 14.3.1 Insecticidal Effects of EOs -- 14.3.2 Antibacterial Activity of EOs -- 14.3.3 Antifungal Effect of EOs -- 14.3.4 Bioconversion Process of EOs and Their Components by Microorganisms -- 14.4 In vitro Synthesis vs Extraction from Natural Sources: How to Obtain Secondary Metabolites -- 14.4.1 Factors Affecting the Extraction of Bioactive Compounds from Natural Sources -- 14.4.2 Production of Azadirachtin by Azadirachta indica. A Case Study -- 14.5 Conclusion -- References -- Chapter 15 Nutraceuticals Productions from Plants -- 15.1 Plant-Derived Nutraceuticals -- 15.2 Phytochemicals and their Impacts on Human Health -- 15.2.1 Polyphenols -- 15.2.2 Terpenoids -- 15.2.3 Alkaloids -- 15.2.4 Fatty Acids -- 15.2.5 Fiber -- 15.3 Engineering Nutraceutical-Enriched Plants -- 15.4 Potential Side Effects of Nutraceuticals on Human Health -- 15.5 Final Considerations -- References -- Chapter 16 Green Synthesis of Nanoparticles Using Various Plant Parts and Their Antifungal Activity -- 16.1 Introduction -- 16.2 Gold Nanoparticle Synthesis Using Plant Source -- 16.3 Silver Nanoparticles Synthesis Using Plants Source -- 16.4 Zinc Oxide Nanoparticles Synthesis Using Plants -- 16.5 Other Nanoparticles Synthesis Using Plant Source -- 16.6 Conclusion and Future Perspective -- Acknowledgement -- Conflicts of Interest -- Author Contribution -- References -- Chapter 17 Plant-Based/Herbal Nanobiocatalysts and Their Applications -- 17.1 Introduction of Nanobiocatalyst
Notes 17.2 Nanobiocatalysts from Herbal Alkaloid Plants Are Used in Nanotechnology and Bioengineering
Description based on publisher supplied metadata and other sources
Genre/Form Electronic books
Form Electronic book
Author Singh, Sudhir P
ISBN 1119875110
9781119875116
1119875099
9781119875093