Limit search to available items
742 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Daneshvar, Mohammadreza

Title Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Edition 1st ed
Published Newark : John Wiley & Sons, Incorporated, 2024
©2024

Copies

Description 1 online resource (475 pages)
Series IEEE Press Series on Power and Energy Systems Series
IEEE Press Series on Power and Energy Systems Series
Contents Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks
4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art
6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell
9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm
Notes 11.4 Delay-Fair Charging Management
Description based on publisher supplied metadata and other sources
Form Electronic book
Author Mohammadi-Ivatloo, Behnam
Anvari-Moghaddam, Amjad
Razzaghi, Reza
ISBN 1394188781
9781394188789
1394188765
9781394188765