Limit search to available items
744 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Manfredi, Luigi

Title Endorobotics Design, R&d and Future Trends
Published San Diego : Elsevier Science & Technology, 2022

Copies

Description 1 online resource (410 p.)
Contents Intro -- Endorobotics: Design, R and D and Future Trends -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Part 1: State of the art of robots for endoscopy -- Chapter 1: Robotics in surgery and clinical application -- 1.1. Introduction -- 1.2. Robot-assisted minimally invasive surgery (RAMIS) -- 1.2.1. Senhance Surgical Robotic System -- 1.2.2. Flex Robotic System -- 1.2.3. Auris Robotic Endoscopy System (ARES) -- 1.2.4. University of Nebraska laparoscopic single-incision robot -- 1.2.5. SPORT Surgical System -- 1.2.5.1. MiroSurge -- 1.2.5.2. Versius -- 1.2.6. Mazor robotics -- 1.2.7. Einstein -- 1.2.8. Verb surgical -- 1.2.9. FreeHand -- 1.2.10. Stiffness controllable flexible and learnable manipulator for surgical operations (STIFF-FLOP) -- 1.2.11. A miniature robot for retraction tasks under vision assistance in MIS -- 1.3. Clinical applications -- 1.4. Conclusions -- References -- Chapter 2: Artificial intelligence for medical robotics -- 2.1. Background -- 2.1.1. Eye surgery -- 2.1.2. Neurosurgery -- 2.1.3. Cardiac Surgery -- 2.1.4. Orthopedic surgery -- 2.1.5. Minimally invasive surgery (MIS) -- 2.2. AI in robotic surgery -- 2.3. AI in diagnosis (pathology/radiology systems) -- 2.4. AI in virtual reality (VR) and simulation -- 2.5. AI in teaching and training -- 2.6. AI in surgical planning and robotic-assisted surgery -- 2.7. Limitations -- 2.8. Conclusions -- References -- Chapter 3: Colonoscopy robots -- 3.1. Introduction -- 3.2. Commercially certified robotic colonoscopes -- 3.3. Research-oriented colonoscopy robots -- 3.4. AI in colonoscopy -- 3.5. Discussion and conclusions: What is now and whats next? -- Acknowledgments -- References -- Chapter 4: Soft robotic systems for endoscopic interventions -- 4.1. Introduction -- 4.2. Overview of endoscopic procedures
4.2.1. Visual examination and diagnostic procedures -- 4.2.2. Endoscopic treatments -- 4.3. Review of commercially available solutions for endoscopic procedures -- 4.3.1. Instruments for optical examination -- 4.3.2. Instruments for therapeutic endoscopy -- 4.3.2.1. Flexible endoscopes -- 4.3.2.2. Laparoscopic instruments -- 4.3.3. Challenges in current endoscopic interventions -- 4.4. Soft robotic systems for endoscopic procedures: State-of-the-art in research -- 4.4.1. Soft robotic instruments for optical examination -- 4.4.2. Soft robotic instruments for therapeutic endoscopy -- 4.4.3. Soft haptic technologies for minimally invasive endoscopic procedures -- 4.4.4. Technical challenges for emerging soft robotic, endoscopic tools -- 4.5. Conclusions and potential opportunities for endoscopic soft robotic systems -- Acknowledgment -- References -- Chapter 5: Simulators -- 5.1. Introduction -- 5.2. Required skills for MAS -- 5.3. Human factors -- 5.4. Training: aviation vs surgery -- 5.5. Types of surgical simulators -- 5.5.1. Animal tissues -- 5.5.2. Synthetic models -- 5.5.3. Cadaver tissues -- 5.5.4. Virtual reality simulators -- 5.6. VR simulators for RALS -- 5.6.1. da Vinci Skills Simulator -- 5.6.2. dV-Trainer -- 5.6.3. Robotic Surgical Simulator -- 5.6.4. RobotiX Mentor -- 5.7. Evidence from the published literature -- 5.8. Curriculum -- 5.8.1. Fundamentals of Robotic Surgery -- 5.8.2. Robotic Training Network -- 5.8.3. Society of European Robotic Gynaecological Surgery -- 5.8.4. European Society of Thoracic Surgeons and European Association for Cardio-Thoracic Surgery -- 5.8.5. European Association of Urology Robotic Urology Section -- 5.8.6. Morristown protocol -- 5.8.7. Curriculum on pancreaticoduodenoctomy -- 5.9. Future research -- References -- Part 2: Materials and engineering design -- Chapter 6: Smart materials for mini-actuators
6.1. Introduction -- 6.2. Shape memory alloy (SMA) -- 6.2.1. SMA material operating principle -- 6.2.2. SMA actuators -- 6.2.2.1. SMA wire actuators -- 6.2.2.2. SMA coil actuators -- 6.2.2.3. Agonist-antagonist SMA wire actuators -- 6.2.3. SMA applications in the biomedical field -- 6.2.3.1. Slender soft robots for endoscopy -- 6.2.3.2. Slender soft robots for stents -- 6.2.3.3. Slender soft robots for drug delivery -- 6.2.3.4. Slender soft robots for minimally invasive surgery -- 6.2.3.5. Locomoting robots for endoscopy -- 6.2.3.6. Artificial muscles and prostheses -- 6.2.3.7. Rehabilitation and assistive devices -- 6.3. Dielectric elastomer (DE) -- 6.3.1. DE material operating principle -- 6.3.2. DE actuators -- 6.3.2.1. In-plane membrane actuators -- 6.3.2.2. Out-of-plane membrane actuators -- 6.3.2.3. Roll actuators -- 6.3.2.4. Stack actuators -- 6.3.2.5. Adaptive structures -- 6.3.3. DE applications in the biomedical field -- 6.3.3.1. Slender soft robots -- 6.3.3.2. Artificial muscles and prostheses -- 6.3.3.3. Rehabilitation and assistive devices -- 6.4. Conclusions -- References -- Chapter 7: Fabrication of endoluminal medical devices -- 7.1. Introduction -- 7.2. Developing endoluminal devices: From scaling laws to the fabrication -- 7.2.1. Scale-related issues: Physical laws -- 7.2.2. Reusability issues for endoluminal devices -- 7.2.3. Fabrication technologies for endoluminal devices -- 7.2.4. Micromachining -- 7.2.5. Additive manufacturing technologies: From 3D to 4D printing -- 7.2.6. Electro-discharge machining -- 7.2.7. Injection molding -- 7.2.8. Laser-based machining -- 7.3. Applications of endoluminal microdevices -- 7.3.1. Rigid systems -- 7.3.2. Articulated assemblies -- 7.3.3. Flexible tethered system -- 7.3.4. Wireless devices -- 7.4. Conclusions and future outlook -- Acknowledgments -- References
Chapter 8: Modeling and control strategies for flexible devices -- 8.1. Introduction -- 8.2. Modeling of continuum robots -- 8.2.1. Geometry-based modeling -- 8.2.2. Mechanics-based modeling -- 8.2.3. Data-based models -- 8.2.4. Challenges and future directions -- 8.3. Control strategies -- 8.3.1. End-effector control -- 8.3.2. Multiobjective control -- 8.3.3. Recent trends -- 8.3.4. Discussions -- 8.4. Conclusions -- References -- Chapter 9: Ultrasound technology for capsule endoscopy -- 9.1. Introduction -- 9.2. Medical ultrasound technology -- 9.2.1. Ultrasonic transducers -- 9.2.2. Ultrasound electronics -- 9.2.3. Diagnostic USCE energy consumption and self-heating -- 9.2.4. Therapeutic technologies -- 9.2.5. Robotic capsules -- 9.3. USCE for diagnostic ultrasound imaging -- 9.3.1. Imaging geometries -- 9.3.2. Single-element transducers -- 9.3.2.1. Fixed transducers -- 9.3.2.2. Rotating transducers -- 9.3.3. Transducer arrays -- 9.4. USCE for ultrasound therapy -- 9.4.1. Technologies -- 9.4.2. Single-element transducers -- 9.4.3. Transducer arrays -- 9.5. Future developments -- 9.5.1. Diagnosis -- 9.5.2. Therapy -- 9.5.2.1. Nanodroplets rather than MBs -- 9.5.2.2. Fully autonomous therapeutic USCE -- 9.5.3. Hybridized multimodal USCE devices -- 9.6. Conclusions -- References -- Chapter 10: Modeling of capsule-intestine contact -- 10.1. Introduction -- 10.2. Mathematical modeling of capsule-intestine contact -- 10.2.1. Mode 1 -- 10.2.2. Mode 2 -- 10.2.3. Mode 3 -- 10.3. Finite element modeling of capsule-intestine contact -- 10.3.1. Mode 1 -- 10.3.2. Mode 2 -- 10.3.3. Mode 3 -- 10.4. Results and analysis -- 10.5. Conclusions -- References -- Chapter 11: Haptic interfaces -- 11.1. Human haptic perception -- 11.1.1. Introduction -- 11.1.2. Anatomic and physiologic background -- 11.1.2.1. Human senses -- 11.1.2.2. The haptic sense
11.1.3. Quantifying senses -- 11.2. Engineering -- 11.2.1. Impedance -- 11.2.2. Haptic transparency -- 11.2.3. One kHz as the engineering goal of a haptic system -- 11.3. Haptic input devices -- 11.3.1. History and state of the art -- 11.3.2. Haptic feedback systems -- 11.3.2.1. Three to six axis displays -- 11.3.2.2. One- and two-axis displays -- 11.3.3. Tactile feedback systems -- 11.3.3.1. Vibrotactile -- 11.3.3.2. Surface modification -- 11.3.3.3. Surface vibration -- 11.3.3.4. Electro tactile -- 11.3.3.5. Ultrasonic -- 11.3.4. Summary -- 11.4. Pseudohaptics -- 11.4.1. Acceleration mapping -- 11.4.2. Displacement-force mapping -- References -- Chapter 12: Case study of vision systems: Optimized compression architecture for wireless endorobots -- 12.1. Introduction -- 12.2. Related works -- 12.3. Architecture design -- 12.3.1. Compression step -- 12.3.2. Coding step -- 12.3.3. Communication step -- 12.4. Experimental results -- 12.4.1. PSNR and CR results relative to standard algorithms -- 12.4.2. PSNR and CR results relative to related works -- 12.4.3. FPGA synthesis results -- 12.5. Conclusions -- References -- Part 3: Ethics, regulation, and project management -- Chapter 13: Regulating endorobots in the European Union: An overview of the ethical and legal framework -- 13.1. Introduction -- 13.2. Ethics and technology: Endorobots as ̀̀social robotś́ -- 13.2.1. Roboethics: Between ̀̀machine ethicś́ and ̀̀engineering ethicś́ -- 13.2.2. Three perspectives in ̀̀engineering ethicś́ -- 13.2.3. Final remarks on ̀̀roboethicś́ -- 13.3. Legal framework of endorobots in the European Union -- 13.3.1. EU regulation on medical devices -- 13.3.2. The challenging definition of medical devices -- 13.3.3. The allocation of liability for endorobots -- 13.3.4. Final remarks on the legal framework -- 13.4. Conclusions -- Author contributions -- References
Notes Description based upon print version of record
Form Electronic book
ISBN 9780128217603
012821760X