Limit search to available items
956 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Jain, Sudhir Ranjan, author.

Title A primer on fluid mechanics with applications / Sudhir Ranjan Jain, Bhooshan S. Paradkar, Shashikumar M. Chitre
Published Cham : Springer, [2022]

Copies

Description 1 online resource (284 pages)
Contents Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Hydrodynamic Description: Validity -- 1.1.1 Streamlines, Streaklines, Pathlines -- 1.1.2 Torricelli's Law -- 1.2 Conservation Laws and Governing Equations -- 1.2.1 Continuity Equation -- 1.2.2 Boussinesq Approximation -- 1.2.3 Anelastic Approximation -- 1.2.4 Validity of the Approximations -- 1.3 Stress-Strain Relationship -- 1.4 Conservation of Momentum -- 1.5 Energy -- 2 Fluid Equations from Kinetic Theory -- 2.1 Continuum Approximation in Fluid Mechanics
2.2 Derivation of Conservation Laws of Fluid Mechanics -- 2.2.1 Mass Conservation Equation -- 2.2.2 Momentum Conservation Equation -- 2.2.3 Energy Conservation Equation -- 2.3 Closure of the Conservation Laws -- 2.3.1 Constitutive Relations for a Newtonian Fluid -- 2.3.2 Equations of State -- 2.4 Governing Equations for the Newtonian Fluid -- 2.4.1 Governing Equations for the Compressible Fluid -- 2.4.2 Governing Equations for an Incompressible Fluid -- 3 Vorticity -- 3.1 Vorticity Equation -- 3.1.1 Vorticity Equation for the Incompressible Fluid -- 3.2 Kelvin's Circulation Theorem
3.3 Charged Fluids and Magnetovorticity -- 4 Potential Flows in Two Dimensions -- 4.1 Use of Complex Analysis in Potential Flow Theory -- 4.1.1 Complex Potentials of the Form W(z) = C Zn -- 4.1.1.1 Construction of Uniform Flows -- 4.1.1.2 Flow Inside a Wedge -- 4.1.1.3 Flow over a Sharp Edge -- 4.1.1.4 Flow due to a Doublet -- 4.1.2 Complex Potentials of the Form W(z) = C logz -- 4.1.2.1 Line Source/Sink Flows -- 4.1.2.2 Line Vortex Flows -- 4.1.3 Potential Flow Past a Cylinder -- 4.1.4 Flow Past a Rotating Cylinder -- 4.2 Conformal Transformations -- 4.2.1 Joukowski Transformation
4.2.2 Joukowski Transformation for Flow Past an Ellipse -- 4.2.3 Joukowski Transformation for Flow over an Airfoil -- 4.3 Force on a Body Immerse in a Potential Flow -- 4.3.1 Force on Cylinder with Circulation Around It -- 4.3.2 D'Alembert's Paradox and Its Resolution -- 5 Viscous Flow -- 5.1 Poiseuille Flow -- 5.2 Flow of Tar Down an Inclined Plane -- 5.3 Stokes Problems -- 5.3.1 Stokes First Problem -- 5.3.2 Stokes Second Problem -- 6 Low Reynolds Number Flows -- 6.1 Reynolds Number and Its Significance -- 6.2 Stokes Flow (Re 1) -- 6.2.1 Axisymetric Stokes Flow -- 6.2.2 Stokes Drag on a Sphere
6.3 General Properties of Stokes Flow -- 6.3.1 Kinematic Reversibility -- 6.3.2 Reciprocal Theorem -- 6.3.3 Force and Torque on a Body of Arbitrary Shape Inside a Low Re Flow -- 6.4 Scallop Theorem for Locomotion in Micro-Organisms -- 6.4.1 Flagellar Locomotion -- 6.5 Low Reynolds Number Flows in Lubrication -- 7 Physiological Hydrodynamics -- 7.1 Basics: Blood Flow Along Arteries -- 7.2 Blood Flow, Pumped by Human Heart -- 7.2.1 Response of Arterial Walls to Pressure -- 7.2.2 Blood Flow in an Artery -- 8 Water Waves -- 8.1 Small-Amplitude Surface Gravity Waves -- 8.1.1 Linear Shallow-Water Waves
Summary This textbook is a pedagogic introduction to a number of phenomena employing fluid mechanics. Beginning with basic concepts and conservation laws for neutral and charged fluids, the authors apply and develop them to understand aerodynamics, locomotion of micro-organisms, waves in air and water, shock waves, hydrodynamic and hydromagnetic instabilities, stars and black holes, blood flow in humans, and superfluids. The approach is to consider various striking topics on fluid mechanics, without losing necessary mathematical rigor. The book balances the qualitative explanations with formal treatment, in a compact manner. A special focus is given to the important and difficult subject of turbulence and the book ends with a discussion on turbulence in quantum fluids. The textbook is dotted by a number of illustrative examples, mostly from real life, and exercises. The textbook is designed for a one semester course and addresses students at undergraduate and graduate level in physics or engineering, who want to research in the fields as diverse as aeronautics, meteorology, cosmology, biomechanics, and mathematical physics. It is requested knowledge of an undergraduate level course on mathematical methods to better understand the topics presented here
Bibliography Includes bibliographical references and index
Notes 8.1.2 Deep-Water Waves
Description based on online resource; title from digital title page (viewed on January 17, 2023)
Subject Fluid mechanics.
Fluid mechanics
Form Electronic book
Author Paradkar, Bhooshan S., author
Chitre, Shashikumar M., author
ISBN 9783031204876
3031204875