Limit search to available items
Book Cover
E-book
Author Grigoriev, Boris A

Title Thermophysical properties of individual hydrocarbons of petroleum and natural gases : properties, methods, and low-carbon technologies
Published San Diego : Elsevier Science & Technology, 2022
©2022

Copies

Description 1 online resource (1074 pages)
Contents 2.2.5. Apparatus for determining p, V, T dependences of liquid and gaseous hydrocarbons -- 2.2.6. Experimental p -- T results -- Results of a saturated vapor pressure review -- Results of the study of hydrocarbons density at atmospheric pressure -- Results of the study of n-alkanes and cyclohexane specific volumes -- Density of n-alkanes and cyclohexane at the saturation line -- Determination of critical parameters of n-alkanes and cyclohexane -- Local (for liquid and gas phases) and fundamental equations of state -- Equations of state in the liquid and dense-gas state -- Mamedov-Akhundov equation of state -- The analysis of Tait equation of state -- Analysis of the Tait equation limits of applicability -- Applying the Tait equation to oils and petroleum products -- Summary of data on the A and B(T) coefficients for oils and oil products -- On the analysis of the temperature dependence of the B(T) coefficient of liquids -- Virial equation of state -- Fundamental thermal equations of state -- Method for determining the FES coefficients -- Calculation of data weights -- 2.3. Isobaric heat capacity -- 2.3.1. Apparatus for measuring of liquids at atmospheric pressure in the temperature range 270-450K -- 2.3.2. Apparatus for measuring of liquids at temperatures 300-470K and pressures 0.1-6.0MPa -- 2.3.3. Low-temperature calorimetric setup -- 2.3.4. Flow calorimetric setup -- Theory of the flow method -- Description of the flow setup ESD -- Pressure measurement -- Measurement of temperature and temperature difference -- Calorimeters adiabaticity control -- Substance flow rate measurement -- Measurement procedure methodology -- Error estimation of measurement results -- Conducting control and verification experiments -- 2.3.5. Experimental results for Cp of liquid hydrocarbons -- 2.3.6. Experimental results for Cp in wide range of state parameters
General characteristics of the experiment -- Measurements in the critical region -- Experimental data initial processing -- Heat capacity of the liquid and gas phase on the saturation line -- Heat capacity in the ideal gas state -- 2.3.7. Caloric properties of hydrocarbons in a wide range of state parameters -- 2.3.8. Methods for calculating Cp -- Methods for calculating the isobaric heat capacity of liquid hydrocarbons at elevated pressures -- Thermodynamic methods for calculating isobaric heat capacity in a wide range of state parameters -- 2.4. Isochoric heat capacity -- 2.4.1. Calorimeter design -- 2.4.2. Preparation of copper oxide -- 2.4.3. Determining of the calorimeters working volume -- 2.4.4. Determining the calorimeters heat capacity -- 2.4.5. Filling the calorimeter with measured substance -- 2.4.6. Procedure for measuring Cv -- 2.4.7. Accounting for corrections and uncertainty estimation of the experimental determination of Cv -- 2.4.8. Experimental results for Cv of hydrocarbons -- 2.5. Speed of sound -- 2.5.1. Fundamentals of the pulse-phase method for measuring speeds of sound -- 2.5.2. Experimental uncertainties of the pulse-phase method -- 2.5.3. Diffraction corrections of acoustic measurements -- 2.5.4. Acoustic cell -- 2.5.5. System for creating and measuring pressure and temperature -- 2.5.6. Experimental results for speeds of sound in hydrocarbons -- 2.6. Surface tension -- 2.6.1. Description of the experimental setup -- 2.6.2. Preparation of the measuring capillaries -- 2.6.3. Experiment procedure -- 2.6.4. Experimental uncertainties of the data -- 2.6.5. The results for surface tension in hydrocarbons -- 2.6.6. Analysis and discussion of the experimental results -- 2.7. Conclusions and recommendations -- References -- Chapter 3: Thermodynamic properties on the phase equilibrium lines -- 3.1. Sublimation point line
3.1.1. Structure of molecular crystals, polymorphism -- 3.1.2. Thermodynamic properties in the sublimation region -- 3.2. Melting point line -- 3.3. Thermal properties on the saturation line liquid gas -- 3.3.1. Local equations of state on the ̀̀liquid-gaś́ saturation curve -- Parameters of characteristic points -- Analysis of data and equations -- n-Pentane -- n-Hexane -- n-Heptane -- n-Octane -- n-Nonane -- n-Decane -- n-Undecane -- n-Dodecane -- n-Tridecane -- Aromatic hydrocarbons -- Cyclohexane -- 3.3.2. Generalized correlations for calculating vapor pressure -- 3.3.3. Generalized correlations for calculating densities of saturated liquid n-alkanes -- 3.3.4. Generalized equation for the predicting densities of saturated gaseous hydrocarbons -- 3.4. Surface tension -- 3.5. Caloric properties on the liquid-gas saturation curve -- 3.5.1. Isobaric heat capacity of saturated liquid phases -- 3.5.2. Isobaric heat capacity of saturated vapor phases -- 3.5.3. Enthalpy and entropy on the saturation curve -- 3.6. Conclusions and recommendations -- References -- Chapter 4: Thermodynamic functions of hydrocarbons in the ideal gas state -- 4.1. Methods for determining the thermodynamic properties in the ideal gas state -- 4.2. Empirical correlations for calculating the ideal gas functions -- 4.3. Predictive methods for calculating ideal gas functions of hydrocarbons -- References -- Chapter 5: Fundamental equations of state of individual substances -- 5.1. Overview of fundamental equations of state -- 5.1.1. Cubic equations of state -- 5.1.2. Virial equations of state -- 5.1.3. Equations obtained in the framework of the statistical associating fluids theory (SAFT) -- Simplified statistical associating fluid theory (SSAFT) -- Lennard-Jones statistical associating fluid theory (LJ-SAFT) -- Statistical associating fluid theory for hard spheres (SAFT-HS)
Statistical associating fluid theory with variable range (SAFT-VR) -- 5.1.4. Extended the Benedict-Webb-Rubin equation -- 5.1.5. Modern fundamental equations of state -- 5.1.6. Methodology for the analytical calculation of thermodynamic quantities using fundamental equations of state -- 5.2. Methods of constructing fundamental equations of state based on experimental data of various types -- 5.2.1. Analysis of the structure and extrapolation behavior of equations of state -- 5.2.2. Structure of the functional (objective function) -- 5.2.3. Algorithms for determining coefficients of the equation of state and its functional form -- Simultaneous optimization algorithm (SIMOPT) by Span and Wagner -- Algorithm based on the Lemmon random search method -- 5.3. Fundamental equations of state at the critical point -- 5.3.1. Crossover equations of state -- 5.3.2. Kiselev-Friends approach -- 5.4. Conclusions and recommendations -- References -- Chapter 6: Modern fundamental equations of state for the most important hydrocarbons of oil, gas condensates, and ass -- 6.1. Overview of the published equations of state -- 6.1.1. Hydrocarbon and associated gases -- Hydrogen -- Nitrogen -- Carbon dioxide -- Water and water vapor -- Methane -- Ethane -- Propane -- n-Butane, isobutane -- 6.1.2. Liquid alkanes -- n-Pentane -- Isopentane -- Neopentane -- n-Hexane -- 2-Methylpentane (isohexane) -- n-Heptane -- n-Octane -- n-Nonane -- n-Decane -- n-Undecane -- n-Dodecane -- n-Tridecane -- 6.1.3. Cycloalkanes -- Cyclopentane -- Cyclohexane -- 6.1.4. Aromatic hydrocarbons -- Benzene -- Ethylbenzene -- 6.1.5. Modern generalized equations of state -- Platzer and Maurer equation -- Span and Wagner equation -- 6.2. Critical region -- 6.2.1. Methane -- 6.2.2. n-Pentane -- 6.2.3. n-Hexane -- 6.2.4. n-Heptane -- 6.2.5. n-Octane -- 6.2.6. Cyclohexane -- 6.2.7. Benzene -- 6.2.8. Toluene
Notes 6.2.9. Generalized crossover equation of state
Description based on publisher supplied metadata and other sources
Subject Hydrocarbons -- Thermal properties
Hydrocarbons -- Thermal properties
Form Electronic book
Author Gerasimov, Anatoly A
Alexandrov, Igor S
Nemzer, Boris
ISBN 0323952186
9780323952187