Limit search to available items
Book Cover
E-book
Author Baird, Donald G.

Title Polymer processing : principles and design / by Donald G. Baird, Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, Dimitris I. Collias, Procter & Gamble Co., Cincinnati, OH
Edition Second edition
Published Hoboken, New Jersey : Wiley, [2014]
Online access available from:
ProQuest Ebook Central Subscription    View Resource Record  

Copies

Description 1 online resource
Contents 1. Importance of Process Design -- 1.1. Classification of Polymer Processes -- 1.2. Film Blowing: Case Study -- 1.3. Basics of Polymer Process Design -- References -- 2. Isothermal Flow of Purely Viscous Non-Newtonian Fluids -- Design Problem I Design of a Blow Molding Die -- 2.1. Viscous Behavior of Polymer Melts -- 2.2. One-Dimensional Isothermal Flows -- 2.2.1. Flow Through an Annular Die -- 2.2.2. Flow in a Wire Coating Die -- 2.3. Equations of Change for Isothermal Systems -- 2.4. Useful Approximations -- 2.5. Solution to Design Problem I -- 2.5.1. Lubrication Approximation Solution -- 2.5.2.Computer Solution -- Problems -- References -- 3. Viscoelastic Response of Polymeric Fluids and Fiber Suspensions -- Design Problem II Design of a Parison Die for a Viscoelastic Fluid -- 3.1. Material Functions for Viscoelastic Fluids -- 3.1.1. Kinematics -- 3.1.2. Stress Tensor Components -- 3.1.3. Material Functions for Shear Flow
10.4.2. Simulation of Blow Molding -- 10.5. Solution to Design Problem IX -- Problems -- References -- 11. Process Engineering for Recycled and Renewable Polymers -- 11.1. Life-Cycle Assessment -- 11.2. Primary Recycling -- 11.3. Mechanical or Secondary Recycling -- 11.3.1. Rheology of Mixed Systems -- 11.3.2. Filtration -- 11.4. Tertiary or Feedstock Recycling -- 11.5. Renewable Polymers and Their Processability -- 11.5.1. Thermal Stability and Processing of Renewable Polymers -- Problems -- References -- Nomenclature
3.1.4. Shear-Free Flow Material Functions -- 3.2. Nonlinear Constitutive Equations -- 3.2.1. Description of Several Models -- 3.2.2. Fiber Suspensions -- 3.3. Rheometry -- 3.3.1. Shear Flow Measurements -- 3.3.2. Shear-Free Flow Measurements -- 3.4. Useful Relations for Material Functions -- 3.4.1. Effect of Molecular Weight -- 3.4.2. Relations Between Linear Viscoelastic Properties and Viscometric Functions -- 3.4.3. Branching -- 3.5. Rheological Measurements and Polymer Processability -- 3.6. Solution to Design Problem II -- Problems -- References -- 4. Diffusion and Mass Transfer -- Design Problem III Design of a Dry-Spinning System -- 4.1. Mass Transfer Fundamentals -- 4.1.1. Definitions of Concentrations and Velocities -- 4.1.2. Fluxes and Their Relationships -- 4.1.3. Fick's First Law of Diffusion -- 4.1.4. Microscopic Material Balance -- 4.1.5. Similarity with Heat Transfer: Simple Applications -- 4.2. Diffusivity, Solubility, and Permeability in Polymer Systems
4.2.1. Diffusivity and Solubility of Simple Gases -- 4.2.2. Permeability of Simple Gases and Permachor -- 4.2.3. Moisture Sorption and Diffusion -- 4.2.4. Permeation of Higher-Activity Permeants -- 4.2.5. Polymer -- Polymer Diffusion -- 4.2.6. Measurement Techniques and Their Mathematics -- 4.3. Non-Fickian Transport -- 4.4. Mass Transfer Coefficients -- 4.4.1. Definitions -- 4.4.2. Analogies Between Heat and Mass Transfer -- 4.5. Solution to Design Problem III -- Problems -- References -- 5. Nonisothermal Aspects of Polymer Processing -- Design Problem IV Casting of Polypropylene Film -- 5.1. Temperature Effects on Rheological Properties -- 5.2. The Energy Equation -- 5.2.1. Shell Energy Balances -- 5.2.2. Equation of Thermal Energy -- 5.3. Thermal Transport Properties -- 5.3.1. Homogeneous Polymer Systems -- 5.3.2. Thermal Properties of Composite Systems -- 5.4. Heating and Cooling of Nondeforming Polymeric Materials
5.4.1. Transient Heat Conduction in Nondeforming Systems -- 5.4.2. Heat Transfer Coefficients -- 5.4.3. Radiation Heat Transfer -- 5.5. Crystallization, Morphology, and Orientation -- 5.5.1. Crystallization in the Quiescent State -- 5.5.2. Other Factors Affecting Crystallization -- 5.5.3. Polymer Molecular Orientation -- 5.6. Solution to Design Problem IV -- Problems -- References -- 6. Mixing -- Design Problem V Design of a Multilayered Extrusion Die -- 6.1. Description of Mixing -- 6.2. Characterization of the State of Mixture -- 6.2.1. Statistical Description of Mixing -- 6.2.2. Scale and Intensity of Segregation -- 6.2.3. Mixing Measurement Techniques -- 6.3. Striation Thickness and Laminar Mixing -- 6.3.1. Striation Thickness Reduction from Geometrical Arguments -- 6.3.2. Striation Thickness Reduction from Kinematical Arguments -- 6.3.3. Laminar Mixing in Simple Geometries -- 6.4. Residence Time and Strain Distributions -- 6.4.1. Residence Time Distribution
6.4.2. Strain Distribution -- 6.5. Dispersive Mixing -- 6.5.1. Dispersion of Agglomerates -- 6.5.2. Liquid -- Liquid Dispersion -- 6.6. Thermodynamics of Mixing -- 6.7. Chaotic Mixing -- 6.8. Solution to Design Problem V -- Problems -- References -- 7. Extrusion Dies -- Design Problem VI Coextrusion Blow Molding Die -- 7.1. Extrudate Nonuniformities -- 7.2. Viscoelastic Phenomena -- 7.2.1. Flow Behavior in Contractions -- 7.2.2. Extrusion Instabilities -- 7.2.3. Die Swell -- 7.3. Sheet and Film Dies -- 7.4. Annular Dies -- 7.4.1. Center-Fed Annular Dies -- 7.4.2. Side-Fed and Spiral Mandrel Dies -- 7.4.3. Wire Coating Dies -- 7.5. Profile Extrusion Dies -- 7.6. Multiple Layer Extrusion -- 7.6.1. General Considerations -- 7.6.2. Design Equations -- 7.6.3. Flow Instabilities in Multiple Layer Flow -- 7.7. Solution to Design Problem VI -- Problems -- References -- 8. Extruders -- Design Problem VII Design of a Devolatilization Section for a Single-Screw Extruder
8.1. Description of Extruders -- 8.1.1. Single-Screw Extruders -- 8.1.2. Twin-Screw Extruders -- 8.2. Hopper Design -- 8.3. Plasticating Single-Screw Extruders -- 8.3.1. Solids Transport -- 8.3.2. Delay and Melting Zones -- 8.3.3. Metering Section -- 8.4. Twin-Screw Extruders -- 8.4.1. Self-wiping Corotating Twin-Screw Extruders -- 8.4.2. Intermeshing Counterrotating Extruders -- 8.5. Mixing Devolatilization, and Reactions in Extruders -- 8.5.1. Mixing -- 8.5.2. Devolatilization in Extruders -- 8.5.3. Reactive Extrusion -- 8.6. Solution to Design Problem VII -- 8.6.1. Dimensional Analysis -- 8.6.2. Diffusion Theory -- Problems -- References -- 9. Postdie Processing -- Design Problem VIII Design of a Film Blowing Process for Garbage Bags -- 9.1. Fiber Spinning -- 9.1.1. Isothermal Newtonian Model -- 9.1.2. Nonisothermal Newtonian Model -- 9.1.3. Isothermal Viscoelastic Model -- 9.1.4. High-Speed Spinning and Structure Formation -- 9.1.5. Instabilities in Fiber Spinning
9.2. Film Casting and Stretching -- 9.2.1. Film Casting -- 9.2.2. Stability of Film Casting -- 9.2.3. Film Stretching and Properties -- 9.3. Film Blowing -- 9.3.1. Isothermal Newtonian Model -- 9.3.2. Nonisothermal Newtonian Model -- 9.3.3. Nonisothermal Non-Newtonian Model -- 9.3.4. Biaxial Stretching and Mechanical Properties -- 9.3.5. Stability of Film Blowing -- 9.3.6. Scaleup -- 9.4. Solution to Design Problem VIII -- Problems -- References -- 10. Molding and Forming -- Design Problem IX Design of a Compression Molding Process -- 10.1. Injection Molding -- 10.1.1. General Aspects of Injection Molding -- 10.1.2. Simulation of Injection Molding -- 10.1.3. Microinjection Molding -- 10.2.Compression Molding -- 10.2.1. General Aspects of Compression Molding -- 10.2.2. Simulation of Compression Molding -- 10.3. Thermoforming -- 10.3.1. General Aspects of Thermoforming -- 10.3.2. Modeling of Thermoforming -- 10.4. Blow Molding -- 10.4.1. Technological Aspects of Blow Molding
Notes Includes index
Print version record and CIP data provided by publisher
Subject Thermoplastics.
Form Electronic book
Author Collias, Dimitris I.
LC no. 2013026201
ISBN 1118354710 (pdf)
1118354729 (epub)
9781118354711 (pdf)
9781118354728 (epub)
(cloth)