Limit search to available items
Book Cover
E-book
Author Dendy, P. P., author.

Title Physics for diagnostic radiology / P.P. Dendy, B. Heaton
Edition Third edition
Published Boca Raton : CRC Press, Taylor & Francis Group, [2012]
©2012

Copies

Description 1 online resource
Series Series in medical physics and biomedical engineering
Series in medical physics and biomedical engineering.
Contents 880-01 1. Fundamentals of radiation physics and radioactivity / P.P. Dendy and B. Heaton -- 2. Production of x-rays / P.P. Dendy and B. Heaton -- 3. Interaction of x-rays and gamma rays with matter / B. Heaton and P.P. Dendy -- 4. Radiation measurement / B. Heaton and P.P. Dendy -- 5. The image receptor / O.W.E. Morrish and P.P. Dendy -- 6. The radiological image / O.W.E. Morrish and P.P. Dendy -- 7. Assessment of image quality and optimisation / P.P. Dendy and O.W.E. Morrish -- 8. Tomographic imaging with x-rays / S.J. Yates and P.P. Dendy -- 9. Special radiographic techniques / P.P. Dendy and B. Heaton -- 10. Diagnostic imaging with radioactive materials / F.I. McKiddie -- 11. Positron emission tomographic imaging (PET) / P.H. Jarritt -- 12. Radiobiology and generic radiation risks / P.P. Dendy and B. Heaton -- 13. Radiation doses and risks to patients / K.E. Goldstone and P.P. Dendy -- 14. Practical radiation protection and legislation / B. Heaton and P.P. Dendy -- 15. Diagnostic ultrasound / A.C. Fairhead and T.A. Whittingham -- 16. Magnetic resonance imaging / Elizabeth A. Moore -- 17. Digital image storage and handling / G. Cusick -- 18. Multiple choice questions
880-01/(S Contents note continued: 14.4.5.9. Regulation 17 Local Rules and Radiation Protection Supervisors (RPSs) -- 14.4.5.10. Regulations 19 and 21 Dose Assessment and Monitoring -- 14.4.5.11. Regulation 27 Sealed Sources -- 14.4.5.12. Regulations 31 and 32 Duties of Manufacturers and Equipment Requirements -- 14.4.5.13. Regulations 33 and 34 Employee Responsibilities -- 14.5. X-ray Rooms -- 14.5.1. Introduction -- 14.5.2. Points of Note on Room Design -- 14.6. Nuclear Medicine -- 14.6.1. Introduction -- 14.6.2. Potential Internal Doses -- 14.6.3. Calculation of Ingestion Dose -- 14.6.4. Special Precautions in Nuclear Medicine -- 14.6.5. PET Facilities -- 14.7. Personal Dosimetry -- 14.7.1. Thermoluminescent Dosimeters (TLDs) and Film Badges -- 14.7.1.1. Thermoluminescent Dosimeters -- 14.7.1.2. Film Badge Dosimeters -- 14.7.1.3. Range of Response -- 14.7.1.4. Linearity of Response -- 14.7.1.5. Calibration against Radiation Standards -- 14.7.1.6. Variation of Sensitivity with Radiation Energy -- 14.7.1.7. Sensitivity to Temperature and Humidity -- 14.7.1.8. Uniformity of Response within Batches -- 14.7.1.9. Maximum Time of Use -- 14.7.1.10. Compactness -- 14.7.1.11. Permanent Visual Record -- 14.7.1.12. Indication of Type of Radiation -- 14.7.1.13. Indication of Pattern of Radiation -- 14.7.2. Optical Luminescence and Electronic Dosimeters -- 14.7.2.1. Optically Stimulated Luminescence -- 14.7.2.2. Electronic Personal Dosimeters (EPDs) -- 14.7.3. Staff Doses -- Appendix -- References -- Further Reading -- Exercises -- 15. Diagnostic Ultrasound / T A Whittingham -- 15.1. Introduction -- 15.2. Ultrasound Wave and the Principles of Echo Mapping -- 15.3. Quantities That Describe an Ultrasound Wave -- 15.3.1. Describing the Vibration of the Medium -- 15.3.2. Excess Pressure -- 15.4. Scale of the Diagnostic Ultrasound Pulse in Time and Space, and Why This Is Important -- 15.5. Production of Echoes -- 15.5.1. Characteristic Acoustic Impedance of a Medium -- 15.5.2. Reflection -- 15.5.3. Scattering -- 15.6. Other Aspects of Propagation -- 15.6.1. Refraction at a Boundary -- 15.6.2. Attenuation of Ultrasound -- 15.6.3. Calculating the Effect of Attenuation -- 15.6.4. Non-Linear Propagation -- 15.6.5. Dispersion -- 15.7. Ultrasound Probes, and How They Work -- 15.7.1. Transducer Element -- 15.7.2. Directing Ultrasound along a Narrow Beam -- 15.7.2.1. Principles of Beamforming -- 15.7.2.2. Receive Beam, and the Principle of Reciprocity -- 15.7.2.3. Sidelobes and Grating Lobes -- 15.7.2.4. Need for Focussing -- 15.7.2.5. Reducing the Slice Width of the Beam -- 15.7.3. Scanning Probes -- 15.7.3.1. Mechanically Scanned Probes -- 15.7.3.2. Linear and Curvilinear Array Probes -- 15.7.3.3. Annular Array Probes -- 15.7.3.4. Phased Array Probes -- 15.7.3.5. Intra-Corporeal Probes (Endoprobes) -- 15.8. Overview of Diagnostic Ultrasound Modes -- 15.8.1. Review of Principles -- 15.8.2. A-Mode -- 15.8.3. B-Mode -- 15.8.4. M-Mode -- 15.8.5. Doppler Modes -- 15.9. Technical Aspects of B-Mode Ultrasound -- 15.9.1. Some Factors that Affect the Quality of a B-Mode Image -- 15.9.2. Beamformer -- 15.9.3. Radio Frequency Amplification and Time-Gain Control -- 15.9.4. Digitisation -- 15.9.5. Write Zoom -- 15.9.6. Amplitude Demodulation -- 15.9.7. Dynamic Range Compression -- 15.9.8. Image Memory, Frame Store, and Scan Conversion -- 15.9.9. Facilities Based on the Image Memory -- 15.9.10. Post-Processing, or Grey-Map Selection -- 15.9.11. Display Monitor -- 15.9.12. Storage of Images, Patient Details and Examination Reports -- 15.10. B-Mode Artefacts -- 15.10.1. Speckle Pattern -- 15.10.2. Reverberation (Multiple Reflections) -- 15.10.3. Mirror Image -- 15.10.4. Beamwidth Artefacts -- 15.10.5. Slice Thickness Artefact -- 15.10.6. Incomplete Boundaries -- 15.10.7. Acoustic Shadows -- 15.10.8. Post-Cystic Enhancement -- 15.10.9. Axial Registration Error -- 15.10.10. Refraction Artefacts -- 15.10.10.1. Lateral Registration Error, and Double Image -- 15.10.10.2. Edge-Effect Shadowing -- 15.10.10.3. Beam Distortion, or Aberration -- 15.11. Tissue-Harmonic Imaging (THI) -- 15.12. Compound Imaging (Compounding) -- 15.12.1. Spatial Compounding -- 15.12.2. Frequency Compounding -- 15.13. Coded Excitation -- 15.14. Contrast Media---Imaging and Therapy -- 15.15. 3D and 4D Ultrasound -- 15.15.1. Introduction -- 15.15.2. 3D and 4D Probes and Modes -- 15.16. Ultrasound Elastography -- 15.17. Doppler Effect -- 15.17.1. Doppler Spectrum of Blood -- 15.17.2. Continuous-Wave Doppler Systems -- 15.17.3. Audio Doppler Blood-Flow Indicators -- 15.17.4. Sampling, Digitisation and Spectral Analysis of Doppler Signals -- 15.17.5. Pulsed-Wave Spectral Doppler, Duplex Scanners and the Aliasing Artefact -- 15.17.6. Interpretation of Doppler Signals -- 15.17.7. Doppler Artefacts -- 15.17.8. Doppler Imaging -- 15.18. Ultrasound Safety -- 15.18.1. Physical Effects and Their Biological Consequences -- 15.18.2. Minimising Hazard -- Conclusion -- References -- Acknowledgements -- Exercises -- 16. Magnetic Resonance Imaging / Elizabeth A Moore -- 16.1. Introduction -- 16.2. Basic Principles of Nuclear Magnetism -- 16.3. Effect of an External Magnetic Field -- 16.3.1. Larmor Equation -- 16.3.2. Net Magnetisation M0 -- 16.3.3. From Quantum to Classical -- 16.4. Excitation and Signal Reception -- 16.4.1. RF Excitation -- 16.4.2. Signal Reception -- 16.5. Relaxation Processes -- 16.5.1. Spin-Lattice Relaxation -- 16.5.2. Spin-Spin Relaxation -- 16.5.3. Inhomogeneity Effects -- 16.6. Production of Spin Echoes -- 16.7. Magnetic Field Gradients -- 16.7.1. Frequency Encoding Gradient and Fourier Transforms -- 16.7.2. Phase Encoding Gradient -- 16.7.3. Selective Excitation -- 16.7.4. Review of Image Formation -- 16.8. κ-space or Fourier Space -- 16.9. Production of Gradient Echoes -- 16.9.1. Dephasing Effects of Gradients -- 16.9.2. Production of Gradient Echoes -- 16.10. Image Contrast -- 16.10.1. Spin Echo Image Contrast -- 16.10.2. Gradient Echo Image Contrast -- 16.10.3. T1W, T2W and PDw Images -- 16.10.4. Inversion Recovery Sequences (STIR and FLAIR) -- 16.11. Contrast Agents -- 16.12. Artefacts and Avoiding Them -- 16.12.1. Cardiac Gating -- 16.12.2. Respiratory Gating -- 16.12.3. MR Angiography -- 16.12.4. Digital Imaging Artefacts -- 16.12.5. Dephasing Artefacts -- 16.13. Technical Considerations -- 16.14. MRI Safety -- 16.14.1. Main Magnetic Field -- 16.14.2. Projectile Effect of B0 -- 16.14.3. Gradient Fields -- 16.14.4. RF Fields -- 16.14.5. MRI in Pregnancy -- 16.15. Conclusions and Future Developments -- References -- Further Reading -- Exercises -- 17. Digital Image Storage and Handling / G Cusick -- 17.1. Introduction -- 17.2. Imaging Chain -- 17.3. Image Acquisition---Digital Representation of Images -- 17.3.1. Sampling -- 17.3.2. Encoding and Storage -- 17.3.2.1. Files -- 17.4. PACS System Architectures -- 17.4.1. Networks -- 17.4.1.1. Functions of the Network -- 17.4.1.2. Open Systems Interconnection -- 17.4.2. Ethernet -- 17.4.2.1. Network Topology---How Devices Are Connected Together -- 17.4.2.2. Bridging and Switching -- 17.4.2.3. Data Packaging on the Network -- 17.4.2.4. Layers 2 and 3 -- 17.4.3. Internet Protocol -- 17.4.3.1. IP Addressing -- 17.4.3.2. Bandwidth and Latency -- 17.4.3.3. Shared Networks -- 17.4.3.4. Subnets and Virtual Networks -- 17.4.3.5. Quality of Service -- 17.4.4. Servers -- 17.4.4.1. Image Acquisition -- 17.4.4.2. Image Database -- 17.4.4.3. Integration with Other Systems -- 17.4.5. Virtualisation -- 17.4.5.1. Storage -- 17.4.5.2. Sizing Storage
Summary "With every chapter revised and updated, Physics for Diagnostic Radiology, Third Edition continues to emphasize the importance of physics education as a critical component of radiology training. This bestselling text helps readers understand how various imaging techniques work, from planar analogue and digital radiology to computed tomography (CT), nuclear medicine, and positron emission tomography (PET) to ultrasound imaging and magnetic resonance imaging (MRI). New to the Third Edition Material on digital receptors Emphasis on the differences between analogue and digital images Coverage of multi-slice CT and three-dimensional resolution, dual energy applications, and cone beam CT Special radiographic techniques, including subtraction techniques and interventional radiology New chapter on PET, with discussion of multi-modality imaging (PET/CT) Additional material on radiation doses and risks to patients New chapter covering picture archiving and communication system (PACS), teleradiology, networks, archiving, and related factors A summary of the main teaching points at the beginning of each chapter After an introductory chapter on basic physics, the book follows the x-ray imaging process: production of x-rays, interaction with the patient, radiation measurement, the image receptor, the radiological image, and image quality assessment. It then covers more advanced x-ray techniques as well as imaging with radioactive materials. The text also focuses on radiobiology, risk and radiation protection, and imaging with non-ionising radiation. The final chapter discusses data handling in a modern, electronic radiology department"--Provided by publisher
Bibliography Includes bibliographical references
Notes Vendor-supplied metadata
Subject Medical physics.
Radiography, Medical.
Diagnostic imaging.
Radiation Protection
Diagnostic Imaging
HEALTH & FITNESS -- Diseases -- General.
MEDICAL -- Clinical Medicine.
MEDICAL -- Diseases.
MEDICAL -- Evidence-Based Medicine.
MEDICAL -- Internal Medicine.
Diagnostic imaging
Medical physics
Radiography, Medical
Form Electronic book
Author Heaton, B., author.
ISBN 9781439896921
1439896925
9781420083163
1420083163
9780429184369
0429184360