Limit search to available items
Book Cover
E-book
Author Gordon, Rachel A.

Title Applied statistics for the social and health sciences / Rachel A. Gordon
Published New York, NY : Routledge : Taylor & Francis, 2012
Online access available from:
ProQuest Ebook Central (owned titles)    View Resource Record  
ProQuest Ebook Central Subscription Collection    View Resource Record  
ProQuest Ebook Central EBA Subscription    View Resource Record  

Copies

Description 1 online resource (xxii, 742 pages) : illustrations
Contents 1 GETTING STARTED -- ch. 1 Examples of Quantitative Research in the Social and Health Sciences -- 1.1. What is Regression Analysis? -- 1.2. Literature Excerpt 1.1 -- 1.3. Literature Excerpt 1 2 -- 1.4. Literature Excerpt 1.3 -- 1.5. Literature Excerpt 1.4 -- 1.6. Summary -- ch. 2 Planning a Quantitative Research Project With Existing Data -- 2.1. Sources of Existing Data -- 2.2. Thinking Forward -- 2.3. Example Research Questions -- 2.4. Example of Locating Studies in ICPSR -- 2.5. Summary -- ch. 3 Basic Features of Statistical Packages and Data Documentation -- 3.1. How are our Data Stored in the Computer? -- 3.2. Why Learn Both SAS and STATA? -- 3.3. Getting Started with a Quantitative Research Project -- 3.4. Summary -- ch. 4 Basics of Writing Batch Programs with Statistical Packages -- 4.1. Getting Started with SAS and Stata -- 4.2. Writing a Simple Batch Program -- 4.3. Expanding the Batch Program to Create New Variables
15.3. Hypothesis Testing with Maximum Likelihood Estimation -- 15.4. The Generalized Linear Model -- 15.5. Summary -- ch. 16 Dichotomous Outcomes -- 16.1. Literature Excerpt 16.1 -- 16.2. Linear Probability Model -- 16.3. Generalized Linear Model -- 16.4. Goodness of Fit -- 16.5. Interpretation -- 16.6. Summary -- ch. 17 Multi-Category Outcomes -- 17.1. Multinomial Logit -- 17.2. Ordered Logit -- 17.3. Putting It All Together -- 17.4.Complex Sampling Designs -- 17.5. Summary -- pt. 5 WRAPPING UP -- ch. 18 Roadmap to Advanced Topics -- 18.1. Revisiting Literature Excerpts from Chapter 1 -- 18.2.A Roadmap to Statistical Methods -- 18.3.A Roadmap to Locating Courses and Resources -- 18.4. Summary -- APPENDICES -- Appendix A Summary of SAS and Stata Commands -- Appendix B Examples of Data Coding, and of the SAS and Stata Interface, Commands, and Results, Based on the National Survey of Families and Households -- Appendix C Screenshots of Data Set Documentation
4.4. Expanding the Batch Program to Keep a Subset of Cases -- 4.5.Complex Sampling Designs -- 4.6. Some Finishing Touches -- 4.7. Summary -- pt. 2 BASIC DESCRIPTIVE AND INFERENTIAL STATISTICS -- ch. 5 Basic Descriptive Statistics -- 5.1. Types of Variables -- 5.2. Literature Excerpts 5.1 and 5.2 -- 5.3. Nominal Variables -- 5.4. Ordinal Variables -- 5.5. Interval Variables -- 5.6. Weighted Statistics -- 5.7. Creating a Descriptive Table -- 5.8. Summary -- ch. 6 Sample, Population and Sampling Distributions -- 6.1. Statistical Inference -- 6.2. Population and Sample Distributions -- 6.3. The Sampling Distribution -- 6.4. General Concepts for Statistical Inference -- 6.5. Other Common Theoretical Distributions -- 6.6. Summary -- ch. 7 Bivariate Inferential Statistics -- 7.1. Literature Excerpts -- 7.2. One Categorical and One Interval Variable -- 7.3. Two Categorical Variables -- 7.4. Two Interval Variables -- 7.5. Weighted Statistics -- 7.6. Summary
Appendix D Accessing the National Survey of Families and Households Raw Data File -- Appendix E Accessing the NHIS Data -- Appendix F Using SAS and Stata's Online Documentation -- Appendix G Example of Hand-Calculating the Intercept, Slope, and Conditional Standard Deviation using Stylized Sample -- Appendix H Using Excel to Calculate and Graph Predicted Values -- Appendix I Using Hayes-Cai SAS Macro for Heteroskedasticity-Consistent Standard Errors
Ch. 11 Interactions -- 11.1. Literature Excerpt 11.1 -- 11.2. Interactions Between Two Dummy Variables -- 11.3. Interaction Between a Dummy and an Interval Variable -- 11.4. Chow Test -- 11.5. Interaction Between Two Interval Variables -- 11.6. Literature Excerpt 11.2 -- 11.7. Summary -- ch. 12 Nonlinear Relationships -- 12.1. Nonlinear Relationships -- 12.2. Summary -- ch. 13 Indirect Effects and Omitted Variable Bias -- 13.1. Literature Excerpt 13.1 -- 13.2. Defining Confounders, Mediators, and Supressor Variables -- 13.3. Omitted Variable Bias -- 13.4. Summary -- ch. 14 Outliers, Heteroskedasticity, and Multicollinearity -- 14.1. Outliers and Influential Observations -- 14.2. Heteroskedasticity -- 14.3. Multicollinearity -- 14.4.Complex Sampling Designs -- 14.5. Summary -- pt. 4 THE GENERALIZED LINEAR MODEL -- ch. 15 Introduction to the Generalized Linear Model with a Continuous Outcome -- 15.1. Literature Excerpt 15.1 -- 15.2. Maximum Likelihood Estimation
pt. 3 ORDINARY LEAST SQUARES REGRESSION -- ch. 8 Basic Concepts of Bivariate Regression -- 8.1. Algebraic and Geometric Representations of Bivariate Regression -- 8.2. The Population Regression Line -- 8.3. The Sample Regression Line -- 8.4. Ordinary Least Squares Estimators -- 8.5.Complex Sampling Designs -- 8.6. Summary -- ch. 9 Basic Concepts of Multiple Regression -- 9.1. Algebraic and Geometric Representations of Multiple Regression -- 9.2. OLS Estimation of the Multiple Regression Model -- 9.3. Conducting Multiple Hypothesis Tests -- 9.4. General Linear F-Test -- 9.5.R-Squared -- 9.6. Information Criteria -- 9.7. Literature Excerpt 9.1 -- 9.8. Summary -- ch. 10 Dummy Variables -- 10.1. Why is a Different Approach Needed for Nominal and Ordinal Predictor Variables? -- 10.2. How Do We Define Dummy Variables? -- 10.3. Interpreting Dummy Variable Regression Models -- 10.4. Putting It All Together -- 10.5.Complex Sampling Designs -- 10.6. Summary
Summary Applied Statistics for the Social and Health Sciences provides graduate students in the social and health sciences with the basic skills that they need to estimate, interpret, present, and publish statistical models using contemporary standards. The book targets the social and health science branches such as human development, public health, sociology, psychology, education, and social work in which students bring a wide range of mathematical skills and have a wide range of methodological affinities. For these students, a successful course in statistics will not only offer statistical content
Bibliography Includes bibliographical references (pages 704-714) and index
Notes Print version record
Subject Public health -- Statistical methods.
Social sciences -- Statistical methods.
Statistics as Topic -- methods.
Biometry.
Public Health.
Social Sciences.
Form Electronic book
ISBN 0203135296 (e-book ; alk. paper)
1136484183 (electronic bk.)
9780203135297 (e-book ; alk. paper)
9781136484186 (electronic bk.)
(hardback ; alk. paper)
(hardback ; alk. paper)