Limit search to available items
Book Cover
E-book

Title Intelligent surfaces in biotechnology : scientific and engineering concepts, enabling technologies, and translation to bio-oriented applications / edited by Marcus Textor, H. Michelle Grandin
Published Hoboken, N.J. : John Wiley & Sons, ©2012

Copies

Description 1 online resource (xxv, 400 pages)
Contents 880-01 Frontmatter -- Color Plates -- Stimulus-Responsive Polymers as Intelligent Coatings for Biosensors: Architectures, Response Mechanisms, and Applications / Vinalia Tjong, Jianming Zhang, Ashutosh Chilkoti, Stefan Zauscher -- Smart Surfaces for Point-of-Care Diagnostics / Michael A Nash, Allison L Golden, John M Hoffman, James J Lai, Patrick S Stayton -- Design of Intelligent Surface Modifications and Optimal Liquid Handling for Nanoscale Bioanalytical Sensors / Laurent Feuz, Fredrik H̲̲k, Erik Reimhult -- Intelligent Surfaces for Field-Effect Transistor-Based Nanobiosensing / Akira Matsumoto, Yuji Miyahara, Kazunori Kataoka -- Supported Lipid Bilayers: Intelligent Surfaces for Ion Channel Recordings / Andreas Janshoff, Claudia Steinem -- Antimicrobial and Anti-Inflammatory Intelligent Surfaces / Hans J Griesser, Heike Hall, Toby A Jenkins, Stefani S Griesser, Krasimir Vasilev -- Intelligent Polymer Thin Films and Coatings for Drug Delivery / Alexander N Zelikin, Brigitte St̃dler -- Micro- and Nanopatterning of Active Biomolecules and Cells / Daniel Aydin, Vera C Hirschfeld-Warneken, Ilia Louban, Joachim P Spatz -- Responsive Polymer Coatings for Smart Applications in Chromatography, Drug Delivery Systems, and Cell Sheet Engineering / Roǧrio P Pirraco, Masayuki Yamato, Yoshikatsu Akiyama, Kenichi Nagase, Masamichi Nakayama, Alexandra P Marques, Rui L Reis, Teruo Okano -- Index
880-01/(S Machine generated contents note: 1. Stimulus-Responsive Polymers as Intelligent Coatings for Biosensors: Architectures, Response Mechanisms, and Applications / Stefan Zauscher -- 1.1. Introduction -- 1.2. SRP Architectures for Biosensor Applications -- 1.2.1. Cross-Linked Polymer Networks (Hydrogels) -- 1.2.2. End-Grafted Polymer Chains (Polymer Brushes) -- 1.2.3. Self-Assembled Polyelectrolyte (PEL) Multilayers (LBL Thin Films) -- 1.2.4. Molecularly Imprinted Polymers -- 1.2.5. Hybrid Coatings -- 1.3. Mechanisms of Response -- 1.3.1. Sensing Selectivity -- 1.3.2. Conformational Reorganization of SRP Coatings -- 1.3.2.1. Changes in Osmotic Swelling Pressure -- 1.3.2.2. Changes in Apparent Cross-Link Density -- 1.4. Sensing and Transduction Mechanisms -- 1.4.1. Optical Transduction -- 1.4.1.1. Examples of SRP Sensors That Use Optical Transduction Principles -- 1.4.2. Electrochemical Transduction -- 1.4.2.1. Examples of SRP Sensors That Use Electrochemical Transduction Principles -- 1.4.3. Mechanical Transduction -- 1.4.3.1. Examples of SRP Sensors That Use Mechanical Transduction Principles -- 1.5. Limitations and Challenges -- 1.5.1. LOD and Sensitivity -- 1.5.2. Selectivity -- 1.5.3. Working Range -- 1.5.4. Response Time -- 1.5.5. Reliability and Long-Term Stability -- 1.6. Conclusion and Outlook -- Acknowledgements -- References -- 2. Smart Surfaces for Point-of-Care Diagnostics / Patrick S. Stayton -- 2.1. Introduction -- 2.1.1. POC Testing Challenges -- 2.2. Standard Methods for Biomarker Purification, Enrichment, and Detection -- 2.3. Smart Reagents for Biomarker Purification and Processing -- 2.3.1. IgG Antibody-pNIPAAm Conjugates -- 2.3.2. Single-Chain Antibody-pNIPAAm Conjugates -- 2.3.3. Nucleotide-pNIPAAm Conjugates -- 2.3.4. Magnetic Nanoparticle (mNP)-pNIPAAm Conjugates -- 2.3.5. Gold Nanoparticle (AuNP)-pNIPAAm Conjugates -- 2.4. Sample-Processing Modules for Smart Conjugate Bioassays -- 2.4.1. Grafting of pNIPAAm from Microchannel Surfaces -- 2.4.2. Grafting of pNIPAAm from Porous Membranes -- 2.4.3. Magnetic Processing Modules -- 2.5. Devices for Use in Smart Conjugate Bioassays -- 2.5.1. Lateral-Flow Immunochromatography Devices -- 2.5.2. Wicking Membrane Flow-Through Devices -- 2.5.3. Polylaminate Microfluidic Devices -- 2.5.4. Multilayer PDMS Smart Microfludic Devices -- 2.6. Conclusions -- References -- 3. Design of Intelligent Surface Modifications and Optimal Liquid Handling for Nanoscale Bioanalytical Sensors / Erik Reimhult -- 3.1. Introduction -- 3.2. Orthogonal Small (Nano)-Scale Surface Modification Using Molecular Self-Assembly -- 3.2.1. Surface Anchor: How to Define and Retain a Molecular Pattern -- 3.2.1.1. Weak Anchors: "Physisorption" -- 3.2.1.2. Strong Anchors: "Chemisorption" -- 3.2.1.3. Weak versus Strong Anchors for Nanoscale Sensors -- 3.2.2. Spacer: How to Suppress Binding -- 3.2.3. Recognizing and Capturing Analytes on an Intelligent Nanostructure -- 3.2.3.1. Antibodies -- 3.2.3.2. Antibody Fragments -- 3.2.3.3. Aptamers -- 3.2.3.4. General Considerations for Recognition Element Immobilization -- 3.3. Alternative Surface Patterning Strategies -- 3.3.1. Lithographic Patterning of Physisorbed Macromolecules -- 3.3.2. Nanoscale Molecular Surface Modification through Printing -- 3.3.3. Nanoscale Molecular Surface Modification through Direct Writing -- 3.3.4. Multivalency and the Intelligent Fluid Biointerface -- 3.3.5. Summary Functionalization of Nanoscale Biosensors -- 3.4. Challenge of Analyte Transport -- 3.4.1. Convective versus Diffusive Flux (jc vs. jD) -- 3.4.1.1. Scenario A (jc = 0) -- 3.4.1.2. Scenario B (jc = jD) -- 3.4.1.3. Scenario C (jc> jD) -- 3.4.1.4. Summary of Scenarios A, B, and C -- 3.4.2. Reactive versus Diffusive Flux (jR VS. jD) -- 3.4.3. Design and Operation Criteria for Efficient Mass Transport -- 3.5. Concluding Remarks -- References -- 4. Intelligent Surfaces for Field-Effect Transistor-Based Nanobiosensing / Kazunori Kataoka -- 4.1. Introduction -- 4.2. FET-Based Biosensors -- 4.2.1. Metal-Insulator-Semiconductor (MIS) Capacitors -- 4.2.2. Principles of bio-FETs -- 4.2.3. Ion-Sensitive Field-Effect Transistors (ISFETs) and Their Direct Coupling with Various Biorecognition Elements as a Conventional Approach to bio-FETs -- 4.3. Intelligent Surfaces for Signal Transduction and Amplification of bio-FETs -- 4.3.1. CNT-Mediated Signal Transduction -- 4.3.2. SAM-Assisted Detection -- 4.3.3. Stimuli-Responsive Polymer Gel-Based Interfaces for "Debye Length-Free" Detection -- 4.4. New Targets of bio-FETs -- 4.4.1. Carbohydrate Chain Sialic Acid (SA) Detection Using PBA SAM-Modified FETs -- 4.4.2. Scent Detection Using "Beetle/Chip" FETs -- 4.4.3. Aptamer-Modified Biorecognition Surfaces for a Universal Platform of bio-FETs -- 4.5. Future Perspective -- References -- 5. Supported Lipid Bilayers: Intelligent Surfaces for Ion Channel Recordings / Claudia Steinem -- 5.1. Introduction -- 5.2. Supported Lipid Bilayers -- 5.2.1. SSMs on Flat Interfaces -- 5.2.1.1. Lipid Bilayers on Transparent Surfaces -- 5.2.1.2. Lipid Bilayers on Gold Surfaces -- 5.2.1.3. Lipid Bilayers on Silicon -- 5.2.2. SSMs on Porous/Aperture Containing Surfaces -- 5.2.2.1. Lipid Bilayers on Micromachined Apertures -- 5.2.2.2. Lipid Bilayers on Porous Materials -- 5.2.3. Patterning of SSMs -- 5.2.3.1. Patterning of Hybrid SSMs -- 5.2.3.2. Patterning of Nonhybrid SSMs -- 5.3. Characteristics of SSMs -- 5.3.1. Thermomechanical Properties of SSMs -- 5.3.2. Mechanical Stability -- 5.4. Ion Channels in SSMs -- 5.4.1. Carriers -- 5.4.2. Channel-Forming Peptides -- 5.4.3. Channel-Forming Proteins -- 5.5. Future Perspective: Ion Channels in Micropatterned Membranes -- References -- 6. Antimicrobial and Anti-Inflammatory Intelligent Surfaces / Krasimir Vasilev -- 6.1. Introduction -- 6.2. Antibacterial Strategies -- 6.2.1. Infection Problem -- 6.2.2. Approaches to Antibacterial Device Surfaces -- 6.2.3. Release of Antimicrobial Compounds from Polymers and Polymeric Coatings -- 6.2.4. Silver-Releasing Coatings -- 6.2.5. Nonfouling Coatings -- 6.2.6. Surface-Grafted Antibacterial Molecules -- 6.3. Bioactive Antibacterial Surfaces -- 6.3.1. Established, Commercially Available Antibiotics -- 6.3.2. Experimental Antibiotics -- 6.4. Stimulus-Responsive Antibacterial Coatings for Wound Dressings -- 6.5. Anti-Inflammatory Surfaces -- 6.5.1. Inflammatory Response -- 6.5.2. Contact Activation of the Complement System -- 6.5.3. Foreign Body Reaction -- 6.5.4. Anti-inflammatory Medication -- 6.5.5. Local Prevention of the Inflammatory Reaction on Medical Device/Implant Surfaces -- 6.5.5.1. Prevention of Contact Activation of the Complement System -- 6.5.5.2. Prevention of the Foreign Body Reaction by Preventing Macrophage Adhesion and Fusion -- 6.5.5.3. Prevention of Inflammation on Material Surfaces by the Release of NO -- 6.5.5.4. Reduction of the Inflammatory Response by Increasing Hemocompatibility -- 6.6. Conclusions and Outlook -- References -- 7. Intelligent Polymer Thin Films and Coatings for Drug Delivery / Brigitte Stadler -- 7.1. Introduction -- 7.2. Surface-Mediated Drug Delivery -- 7.2.1. Controlled Cell Adhesion and Proliferation -- 7.2.2. Small Cargo -- 7.2.3. Delivery and Presentation of Protein and Peptide Cargo -- 7.2.4. Delivery of Gene Cargo -- 7.3. Drug Delivery Vehicles with Functional Polymer Coatings -- 7.3.1. Core-Shell Particles -- 7.3.2. Polymer Capsules -- 7.4. Concluding Remarks -- References -- 8. Micro- and Nanopatterning of Active Biomolecules and Cells / Joachim P. Spatz -- 8.1. Introduction -- 8.2. Chemical Approaches for Protein Immobilization -- 8.3. Biomolecule Patterning by "Top-Down" Techniques -- 8.3.1. Microcontact Printing (μCP) -- 8.3.2. Nanoimprint Lithography (NIL) -- 8.3.3. Electron Beam Lithography (EBL) -- 8.3.4. Dip-Pen Nanolithography (DPN) -- 8.4. Biomolecule Nanoarrays by Block Copolymer Nanolithography -- 8.4.1. Block Copolymer Nanolithography -- 8.4.2. Biofunctionalization of Nanostructures -- 8.4.3. Hierarchically Nanostructured Biomolecule Arrays -- 8.4.4. Fabrication of Nanoscale Distance Gradients -- 8.4.5. Soft Polymeric Biomolecule Arrays -- 8.5. Application of Nanostructured Surfaces to Study Cell Adhesion -- 8.5.1. Mimicking the Extracellular Environment -- 8.5.2. Nanoscale Control of Cellular Adhesion -- 8.5.3. Micro-Nanopatterns to Uncouple Local from Global Density -- 8.5.4. Nanoscale Gradients to Induce Cell Polarization and Directed Migration -- 8.5.5. Substrate Elasticity Determines Cell Fate -- 8.6. Conclusion -- References -- 9. Responsive Polymer Coatings for Smart Applications in Chromatography, Drug Delivery Systems, and Cell Sheet Engineering / Teruo Okano -- 9.1. Introduction -- 9.2. Temperature-Responsive Chromatography -- 9.2.1. Hydrophobic Chromatography -- 9.2.2. Ion-Exchange Chromatography -- 9.2.3. Affinity Chromatography -- 9.3. Temperature-Responsive Polymer Micelles -- 9.3.1. Temperature-Responsive Corona -- 9.3.2. Temperature-Responsive Core -- 9.4. Temperature-Responsive Culture Surfaces -- 9.4.1. Temperature-Responsive Culture Dishes -- 9.4.2. Temperature-Responsive Surfaces on Porous Substrates -- 9.4.3. Functionalization of Temperature-Responsive Surfaces -- 9.4.4. Temperature-Responsive Surface Patterning -- 9.5. Cell Sheet Engineering -- 9.5.1. Characterization of Harvested Cell Sheets -- 9.5.2. Applications in Regenerative Medicine
Summary "This resource gives a comprehensive overview of surface modifications for applications in biotechnology using intelligent coatings. The coverage includes chemical properties, characterization methods, coating techniques, state-of-the-art examples, and an outlook on the promising future of this technology. It enables the interested materials scientist, chemist, or engineer to gain a comprehensive overview of the field, highlighting applications, with each chapter written by an expert in that particular area. Applications covered include tissue engineering, biotribology, drug targeting and delivery, wound healing, biosensors, nanopatterning, and bioinspired design of new smart materials and surfaces"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes Machine generated contents note: Chapter 1. Stimulus Responsive Polymers as Intelligent Coatings for Biosensors: Architectures, Response Mechanisms, and Applications Vinalia Tjong, Jianming Zhang, Ashutosh Chilkoti and Stefan Zauscher 1.1 Introduction 1.2 SRP Architectures for Biosensor Applications 1.3 Mechanisms of Response 1.4 Sensing and Transduction Mechanisms 1.5 Limitations and Challenges 1.6 Conclusion and Outlook Chapter 2. Smart Surfaces for Point-of-Care Diagnostics Michael A. Nash, Allison L. Golden, John M. Hoffman, James L. Lai, and Patrick S. Stayton 2.1 Introduction 2.2 Standard Methods for Biomarker Purification, Enrichment, and Detection 2.3 Smart Reagents for Biomarker Purification and Processing 2.4 Sample-Processing Modules for Smart Conjugate Bioassays 2.5 Devices for use in Smart Conjugate Bioassays 2.6 Conclusions Chapter 3. Design of intelligent surface modifications and optimal liquid handling for nanoscale bioanalytical sensors Laurent Feuz, Fredrik Höök and Erik Reimhult 3.1 Introduction 3.2 Orthogonal small (nano)--scale surface modification using molecular self-assembly 3.3 Alternative surface patterning strategies 3.4 The challenge of analytic transport 3.5 Concluding remarks Chapter 4. Intelligent Surfaces for Field Effect Transistor Based Nano-biosensing Akira Matsumoto, Yuji Miyahara Kazunori Kataoka 4.1 Introduction 4.2 Field effect transistor based biosensors 4.3 Intelligent surfaces for signal transduction and amplification of Bio-FETs 4.4 New targets of Bio-FETs 4.5 Future Perspective Chapter 5. Supported lipid bilayers: intelligent surfaces for ion channel recordings Andreas Janshoff and Claudia Steinem 5.1 Introduction 5.2 Supported lipid bilayers 5.3 Characterizatics of SSMs 5.4 Ion channels in SSMs 5.5 Future perspective: Ion channels in micropatterned membranes Chapter 6. Antimicrobial and anti-inflammatory intelligent surfaces Hans J. Griesser, Heike Hall. A. Toby, A. Jenkins, Stegani S. Griesser, Krasimir Vasilev 6.1 Introduction 6.2 Antibacterial strategies 6.3 Bioactive antibacterial surfaces 6.4 Stimulus-responsive antibacterial coatings for wound dressings 6.5 Anti-inflammatory surfaces 6.6 Conclusions and Outlook Chapter 7. Intelligent Polymer Thin Films and Coatings for Drug Delivery Alexander N. Zelikin, Brigitte Stadler 7.1 Introduction 7.2 Surface Mediated Drug Delivery 7.3 Drug Delivery Vehicles With Functional Polymer Coatings 7.4 Outlook Chapter 8. Micro- and Nanopatterning of Active Biomolecules and Cells Daniel Aydin, Vera C. Hirschfeld-Warmeken, Ilia Louban and Joachim P. Spatz 8.1 Introduction 8.2 Chemical Approaches for Protein Immobilization 8.3 Biomolecule patterning by "top-down" techniques 8.4 Biomolecule Nanoarrays bu Block Copolymer Nanolithography 8.5 Application of Nanostructured Surfaces to Study Cell Adhesion 8.6 Conclusion Chapter 9. Responsive polymer coatings for smart applications in chromatography, drug delivery systems and cell sheet engineering Rogerio P. Pirraco, Masayuki Yamato, Yoshikatsu, Kenichi Nagase, Masamichi Nakayama, Alexandra P. Marques, Rui L. Reis and Teruo Okano 9.1 Introduction 9.2 Temperature-responsive chromatography 9.3 Temperature-responsive polymer micelle 9.4 Temperature-responsive culture surfaces 9.5 Cell sheet Engineering 9.6 Conclusions
English
Subject Biomedical materials.
Biotechnology -- Materials
Smart materials.
Surfaces (Technology)
Coated Materials, Biocompatible
Biomedical Engineering -- methods
Biotechnology -- methods
Biocompatible Materials
Biomedical and Dental Materials
MEDICAL -- Instruments & Supplies.
Biomedical materials
Biotechnology -- Materials
Smart materials
Surfaces (Technology)
Biomedical materials.
Biotechnology -- Materials.
Smart materials.
Surfaces (Technology)
Form Electronic book
Author Textor, Marcus
Grandin, H. Michelle
LC no. 2011041440
ISBN 9781118181218
1118181212
9781118181249
1118181247
0470536500
9780470536506
9781280590962
1280590963
9786613620798
6613620793
1118181239
9781118181232