Limit search to available items
Book Cover
E-book

Title Advanced technology for the conversion of waste into fuels and chemicals. Volume 1, Biological processes / edited by Anish Khan [and five others]
Published Oxford : Woodhead Publishing, 2021

Copies

Description 1 online resource : illustrations (black and white, and colour)
Contents Front Cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Waste to energy: an overview by global perspective -- 1.1 Introduction -- 1.2 Potential waste biomass -- 1.2.1 Agricultural and forest residue -- 1.2.2 Industrial waste biomass -- 1.2.3 Municipal waste biomass -- 1.2.4 Micro- and macroalgae waste biomass -- 1.3 Biofuels from waste -- 1.3.1 Biodiesel -- 1.3.2 Bioethanol fermentation -- 1.3.3 Bio-oil and biochar -- 1.3.4 Biomethane and biohydrogen -- 1.3.5 Syngas and bioelectricity -- 1.4 Socioeconomic perspective -- 1.5 Environmental perspective -- 1.6 Integrated approaches of biofuel from waste -- 1.7 Conclusion -- References -- Chapter 2 Potential of advanced photocatalytic technology for biodiesel production from waste oil -- 2.1 Introduction -- 2.1.1 Biodiesel-strength and weakness -- 2.1.2 Biodiesel as an alternative fuel -- 2.1.3 WCO as a feedstock for biodiesel production -- 2.2 Reaction process to produce biodiesel -- 2.2.1 Microemulsion technique -- 2.2.2 Direct use and blending technique -- 2.2.3 Pyrolysis of oil -- 2.2.4 Transesterification process -- 2.2.5 Esterification process -- 2.3 Catalyst for biodiesel production -- 2.4 Photocatalyst -- 2.4.1 Mechanism of photocatalysis -- 2.4.2 Important circumstances influence photocatalyst performance -- 2.4.3 Synthesis of photocatalysts -- 2.5 Fundamental of photocatalyst in biodiesel production -- 2.5.1 TiO2 as a photocatalyst in biodiesel production -- 2.5.2 Zinc oxide \(ZnO\) nanocatalyst as heterogeneous photocatalyst -- 2.6 Parameters affecting on photocatalytic esterification -- 2.6.1 Effect of alcohol to oil ratio -- 2.6.2 Effect of catalyst loading -- 2.6.3 Effect of stirring speed -- 2.6.4 Effect of UV irradiation time and lamp power -- 2.7 Conclusion -- Acknowledgments -- References
Chapter 3 Biofuel production from food waste biomass and application of machine learning for process management -- 3.1 Introduction -- 3.2 Growing concern for food loss waste (FLW) -- 3.3 Conversion techniques -- 3.3.1 Biochemical technology -- 3.4 Thermochemical technology -- 3.4.1 Gasification -- 3.4.2 Pyrolysis -- 3.4.3 Liquefaction -- 3.5 Sustainable management of FW with machine learning -- 3.5.1 Machine learning overview for FW and biofuel -- 3.6 Prediction of energy demand and biofuel production from FW -- 3.6.1 Life cycle of machine learning-based energy demand and biofuel production -- 3.7 Conclusion -- References -- Chapter 4 Biological conversion of lignocellulosic waste in the renewable energy -- 4.1 Introduction -- 4.2 Lignocellulosic biomass and technical benefits -- 4.3 The role of bacteria in the decomposition of plant biomass and the production of RE -- 4.4 The future of RE and the challenges -- 4.5 Conclusion -- References -- Chapter 5 The potential of sustainable biogas production from animal waste -- 5.1 Introduction -- 5.2 Biogas components -- 5.3 Factors affecting biogas production -- 5.4 Anaerobic fermentation -- 5.4.1 Bacteria -- 5.4.2 Temperature -- 5.4.3 pH -- 5.4.4 Carbon to nitrogen ratio -- 5.4.5 Concentration of the solid in the feeding solution -- 5.4.6 Feeding rates of organic matter (degree of loading) -- 5.4.7 Time of solution remaining in the fermenter -- 5.4.8 Toxic substances in nutrition -- 5.4.9 Use prefixes -- 5.4.10 Flipping inside the fermenter -- 5.5 Environmental and economic benefits from biogas generation -- 5.6 The properties of the different gases compared to the biogas -- 5.7 Prospects for the development of biogas production technology and current problems -- 5.8 Conclusion -- References
Chapter 6 Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals -- 6.1 Introduction -- 6.2 Food valorization to produce chemicals -- 6.2.1 Multitudinous valorization methods for chemical production -- 6.3 Transformation of food waste into bioenergy -- 6.3.1 Biogas formation -- 6.3.2 Biohydrogen production -- 6.3.3 Distinctive techniques for biofuel production -- 6.4 Conclusion -- References -- Chapter 7 Biochemical conversion of lignocellulosic waste into renewable energy -- 7.1 Introduction -- 7.2 Structural and functional attributes of LCMs -- 7.2.1 Socioeconomic aspects of LCMs -- 7.2.2 Biorefinery-based bioeconomy-considerations -- 7.2.3 Biotransformation of LCMs -- 7.2.4 Enzyme-based pretreatment of LCMs -- 7.2.5 Chemical-based pretreatment of LCMs -- 7.3 Biofuels generation -- 7.4 Conclusion and perspectives -- References -- Chapter 8 Recent trends on the food wastes valorization to value-added commodities -- 8.1 Introduction-food waste and its global scenario -- 8.2 FW hierarchy -- 8.3 FW-generating sectors -- 8.4 FW valorization to worth-added commodities -- 8.5 Biotransformation of FWs -- 8.6 Value-added components recovery -- 8.6.1 Recovery of organic acids -- 8.6.2 Nutraceuticals -- 8.6.3 Nanoparticles -- 8.6.4 Dietary fiber -- 8.7 Production of biomaterials and biofertilizer -- 8.7.1 Biopolymers -- 8.7.2 Single-cell protein (microbial biomass) -- 8.7.3 Bio-based colorants -- 8.7.4 Bioadsorbent -- 8.7.5 Biofertilizer -- 8.7.6 Bio-based high value-added products -- 8.7.7 Enzymes production from FW and their application -- 8.8 Conclusion and recommendations -- References -- Chapter 9 Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels -- 9.1 Introduction
9.2 Lignocellulosic biomass -- 9.2.1 Sources of lignocellulosic biomass -- 9.2.2 Properties and composition of lignocellulosic biomass -- 9.3 Pretreatment techniques -- 9.3.1 Physical pretreatment technique -- 9.3.2 Chemical pretreatment technique -- 9.3.3 Physiochemical pretreatment technique -- 9.3.4 Biological pretreatment technique -- 9.3.5 Combination pretreatment technique -- 9.4 Thermochemical conversion of lignocellulosic biomass -- 9.4.1 Thermochemical lignocellulosic biorefineries -- 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass -- 9.4.3 Hybrid biorefineries -- 9.5 Conclusion -- References -- Chapter 10 Biodiesel production from waste cooking oil using ionic liquids as catalyst -- 10.1 Introduction -- 10.2 Recent trends -- 10.3 Waste cooking oil -- 10.4 Transesterification of WCO -- 10.5 Experimental analysis -- 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] -- 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO -- 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system -- 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst -- 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts -- 10.6 Conclusion -- References -- Chapter 11 Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation -- 11.1 Introduction -- 11.2 Biodiesel synthesis -- 11.2.1 Feedstock used for biodiesel synthesis -- 11.2.2 FFAs and their effect on biodiesel synthesis -- 11.2.3 Types of catalysts and its significance -- 11.3 Cavitation -- 11.3.1 Acoustic cavitation -- 11.3.2 HC and its mechanism -- 11.4 Review of current status of utilization of WCO for synthesis of biodiesel -- 11.4.1 Synthesis of biodiesel using AC
11.4.2 Synthesis of biodiesel using HC -- 11.5 Conclusion -- References -- Chapter 12 Production of biochar from renewable resources -- 12.1 Biochar definition -- 12.2 Biochar applications -- 12.3 Biochar production -- 12.3.1 Pyrolysis -- 12.3.2 Gasification -- 12.3.3 Hydrothermal carbonization -- 12.3.4 Other processes -- 12.4 Factors affecting biochar production -- 12.4.1 Feedstocks of biochar -- 12.4.2 Thermochemical temperature -- 12.5 Mechanism of biochar production -- 12.6 Conclusions -- References -- Chapter 13 Microbial fuel cell technology for bio-electrochemical conversion of waste to energy -- 13.1 Introduction -- 13.2 MFC technology -- 13.2.1 Technological background, performance indicators, and operating parameters -- 13.3 Role of microbial species and mechanism of electron transport in MFC -- 13.3.1 Substrate composition in MFC -- 13.3.2 Electrode material -- 13.3.3 MFC design and architecture -- 13.4 Bioenergy production from MFC -- 13.4.1 Simple substrate molecules for electricity generation -- 13.4.2 Complex wastewater used for electricity generation -- 13.4.3 Pitfalls and future prospects -- 13.5 Conclusion -- References -- Chapter 14 Case study of nonrefined mustard oil for possible biodiesel extraction: feasibility analysis -- 14.1 Introduction -- 14.2 Materials and methods -- 14.2.1 Catalyst preparation -- 14.2.2 Collection of nonrefined mustard oil -- 14.2.3 Design of experiment using Taguchi -- 14.2.4 Transesterification -- 14.2.5 Characterization of catalyst -- 14.3 Results and discussion -- 14.3.1 Characterization of catalyst -- 14.3.2 ANOVA and RSM -- 14.3.3 Effect of operating parameters -- 14.4 Conclusion -- References -- Chapter 15 Waste oil to biodiesel -- 15.1 Second-generation feedstock for biodiesel production -- 15.1.1 Used cooking oil -- 15.1.2 Grease -- 15.1.3 Animal fat -- 15.1.4 Soapstock -- 15.1.5 Nonedible oils
Notes 1. Waste to Energy an overview by global perspective<br>2. Catalytic pyrolysis production of Jet fuel from waste plastics<br>3. The potential of sustainable biogas production from animal waste<br>4. Integrated Conversion of waste Cellulosic waste to High-Density Aviation Fuel Thermochemical, and conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels<br>5. Biological conversion of lignocellulosic waste into renewable energy.<br>6. Biochemical conversion of lignocellulosic waste into renewable energy<br>7. Hybrid conversion of lignocelluloses into renewable energy<br>8. Textile waste to a bio-energy conversion strategies<br>9. Microbial fuel cell technology for Bioelectrochemical conversion of waste to energy<br>10. Catalytic Production of Value-Added Chemicals and Liquid Fuels from waste<br>11. Production of fuels and chemicals from renewable resources using engineered Escherichia coli<br>12. Diesel engine performance and emissions with fuels derived from waste tyres<br>13. Waste to Chemicals for a Circular Economy<br>14. Current and future trends in food waste valorization for the production of chemicals, materials and fuels<br>15. Perspectives and State of the Art in Producing Solar Fuels and Chemicals from CO2<br>16. Fine Chemicals: Technology and Products<br>17. Waste to liquid fuels: potency, progress and challenges<br>18. Nanomaterials for the Conversion of Carbon Dioxide into Renewable Fuels<br>19. Integrated Conversion of Cellulose to High-Density Aviation Fuel<br>20. Recent trends on the waste valorization techniques for food wastes<br>21. Waists treatments for energy technology<br>22. Solid oxide fuel cell technology for sustainable development<br>23. Energetic valorization of waste tires<br>24. Advanced Vehicle Systems and Technologies: Economic and Environmental Implications<br>25. Assessment of the energy recovery potential of waste Photovoltaic (PV) modules<br>26. New approach to waste-heat energy harvesting: pyroelectric energy conversion<br>27. Case study of industrial conversion of solid waste into energy or chemicals<br>28. Laboratory waste management for useful cause
Description based on CIP data; resource not viewed
Subject Waste products as fuel.
Biomass energy.
Biomass energy
Waste products as fuel
Form Electronic book
Author Khan, Anish, editor
ISBN 9780128235270
0128235276