Limit search to available items
Book Cover
E-book

Title Biomedical composites : materials, manufacturing, and engineering / edited by J. Paulo Davim
Published Berlin ; Boston : Walter de Gruyter GmbH & Co., KG, [2014]
©2014
Table of Contents
 Prefacev
 List of Contributing Authorsxi
1.Ceramic polymer composites for hard tissue applications / Chandra P. Sharma1
1.1.Introduction1
1.2.Polyethylene based composites3
1.3.Polymethymethacrylate based composites6
1.4.Polyester based composites7
1.5.Chitosan based composites10
1.6.Future Scope11
1.7.Conclusion12
 References12
2.HAp-metal based biocomposite coatings and characteristics of plasma-deposited HAp-Ti/Ti6Al4V coatings / Ramesh K. Guduru17
2.1.Introduction17
2.2.HAp-Ti/Ti6Al4V based composites18
2.2.1.Hydroxyapatite (HAp)18
2.2.2.Titanium and its alloys19
2.3.Plasma Spray of HAp-Ti/Ti6Al4V based composites20
2.4.Property requirement of biocomposites21
2.4.1.Mechanical properties22
2.4.2.Biocompatibility22
2.4.3.Bioactivity23
2.5.Property evaluation23
2.5.1.Bond strength23
2.5.2.Corrosion behavior evaluation24
2.5.3.Immersion test in simulated body fluid24
2.6.Plasma sprayed HAp-(Ti/Ti6Al4V) based composite coatings25
2.6.1.Bond strength of plasma-sprayed HAp-(Ti/Ti6Al4V) based composite coatings25
2.6.2.Electrochemical corrosion behavior of plasma-sprayed HAp-(Ti/Ti6Al4V) based composite coatings27
2.6.3.Immersion behavior of plasma sprayed HAp-(Ti/Ti6Al4V) based composite coatings27
2.7.Conclusions29
 References29
3.Hydrogels based on poly(vinylalcohol) for cartilage replacement / Jimena S. Gonzalez33
3.1.Hydrogels: General Ideas33
3.2.Main properties of hydrogels34
3.3.Hydrogels as biomaterials37
3.4.Polyvinyl alcohol (PVA) hydrogels: General characteristics38
3.5.PVA hydrogels for biomedical applications40
3.6.Cartilage: A brief description41
3.7.Articular cartilage: Architecture and composition41
3.8.Articular cartilage: Mechanical properties43
3.9.Frequent medical issues relating to cartilage: Degeneration and osteoarthritis44
3.10.Materials used as articular replacement44
 Conclusions46
 Acknowledgments46
 References46
4.Polymer composites for cemented total hip replacements / S. Kanagaraj53
4.1.Introduction53
4.1.1.Understanding hip joint prosthesis and fixation techniques53
4.1.2.Economic and clinical factors surrounding revision surgeries56
4.2.UHMWPE composites57
4.3.PMMA composites60
 Summary63
 Future scope63
 References64
5.Bioresorbable composites for bone repair / Jose M.F. Ferreira69
5.1.Introduction69
5.2.Bioresorbable materials73
5.2.1.Polymers73
5.2.1.1.Polyglycolic acid -- PGA73
5.2.1.2.Polylactic acid -- PLA74
5.2.1.3.PGA-PLA copolymers76
5.2.1.4.Poly ε-caprolactone -- PCL76
5.2.2.Bioactive ceramics77
5.3.Composites manufacturing methods78
5.4.Clinical applications of bioresorbable composites for bone repair79
5.5.Conclusions80
 References81
6.Bioactive glasses and glass-ceramics / H. Doweidar89
6.1.Biodental metals, ceramics and bioactive glass-ceramics; historical background89
6.2.Metallic implant materials89
6.2.1.Gold alloys90
6.2.2.Dental amalgam90
6.3.Glass-ceramics and bioactive glass-ceramics90
6.3.1.Commercial glass-ceramic products91
6.3.2.Protective glass-ceramic91
6.3.3.Bioceramics92
6.4.Preparation techniques92
6.5.Structure of glass-ceramics94
6.6.Crystallinity enhancement96
6.6.1.By adding activator agents96
6.6.2.By sintering process98
6.7.Dental glass-ceramics98
6.8.Bioactive glass-ceramics99
6.9.In vitro and in vivo test for bioactivity101
 References104
7.Metal oxide-based one-dimensional titania nanostructures via electrospinning: Characterization and antimicrobial applications / Myung-Seob Khil107
7.1.Introduction107
7.2.General routes/procedures for the synthesis of nanofibers109
7.3.Electrospinning process109
7.4.General applications of electrospun nanofibers111
7.5.Antimicrobial applications of metal oxide-based nanotextured materials/nanofibers112
7.6.Concept of doping and composite nanofibers113
7.7.Development of pristine TiO2 nanofibers via electrospinning technique114
7.8.Doping of titania with metal oxide117
7.8.1.Doping of titania with zinc117
7.8.2.Doping of titania with copper121
7.8.3.Doping of titania with nickel124
7.8.4.Doping of titania with cobalt126
7.8.5.Doping of titania with cerium128
7.9.Plausible antibacterial mechanism of TiO2 / doped-TiO2 nanostructures131
7.10.Concluding remarks133
 Acknowledgment134
 References134
8.Hydrogels for biomedical applications / Assunta Borzacchiello141
8.1.Hydrogels: Classification and basic structure141
8.1.1.In situ forming hydrogels143
 Physical crosslinking methods143
 Covalent crosslinking strategies for forming hydrogels in situ146
8.2.Structure-properties relationship147
8.2.1.Hydrogel mechanical properties147
 Hydrogels' time dependent properties147
 Stress strain behavior149
8.2.2.Hydrogel swelling150
8.3.Biomedical applications152
8.3.1.Tissue engineering152
8.3.2.Drug delivery155
8.3.2.1.Design criteria for hydrogels in drug delivery156
 Incorporation of drugs157
8.3.2.2.Drugs release from hydrogels formulations158
 Dynamic hydrogels159
 Composite hydrogels160
 Micro-nanoscale hydrogels160
 In situ forming hydrogel161
 References162
 Index169

Copies

Description 1 online resource (xiii, 170 pages) : illustrations (some color)
Series Advanced composites, 2192-8983 ; 2
Advanced composites ; 2. 2192-8983
Contents Ceramic polymer composites for hard tissue applications -- HAp-metal based biocomposite coatings and characteristics of plasma-deposited HAp-Ti/Ti6Al4V coatings -- Hydrogels based on poly(vinylalcohol) for cartilage replacement -- Polymer composites for cemented total hip replacements -- Bioresorbable composites for bone repair -- Bioactive glasses and glass-ceramics -- Metal oxide-based one-dimensional titania nanostructures via electrospinning: Characterization and antimicrobial applications -- Hydrogels for biomedical applications
Summary "Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry"--Publisher's description
Bibliography Includes bibliographical references and index
Notes Online resource; title from resource home page (ebrary, viewed October 14, 2015)
Subject Composite materials.
Biomedical materials.
Biocompatible Materials
composite material.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Biomedical materials
Composite materials
Technology.
Form Electronic book
Author Davim, J. Paulo, editor.
LC no. 2013043132
ISBN 9783110267488
3110267489
9781523100477
1523100478