Limit search to available items
Book Cover
E-book
Author Lawson, H. Blaine.

Title Spin Geometry (PMS-38)
Published Princeton : Princeton University Press, 2016
Online access available from:
JSTOR eBooks    View Resource Record  

Copies

Description 1 online resource (442 pages)
Series Princeton Mathematical Series ; v. 38
Princeton mathematical series.
Contents Cover; Title; Copyright; Dedication; Contents; PREFACE ; ACKNOWLEDGMENTS ; INTRODUCTION ; CHAPTER I Clifford Algebras, Spin Groups and Their Representations ; 1. Clifford algebras ; 2. The groups Pin and Spin ; 3. The algebras Cln and Clr, s; 4. The classification ; 5. Representations ; 6. Lie algebra structures
1. Spin structures on vector bundles 2. Spin manifolds and spin cobordism ; 3. Clifford and spinor bundles ; 4. Connections on spinor bundles ; 5. The Dirac operators ; 6. The fundamental elliptic operators ; 7. Clk-linear Dirac operators; 8. Vanishing theorems and some applications
7. Some direct applications to geometry 8. Some further applications to the theory of Lie groups ; 9. K-theory and the Atiyah-Bott-Shapiro construction ; 10. KR-theory and the (1,1)-Periodicity Theorem ; CHAPTER II Spin Geometry and the Dirac Operators
7. The topological invariance of the index 8. The index of a family of elliptic operators ; 9. The G-index ; 10. The Clifford index ; 11. Multiplicative sequences and the Chern character ; 12. Thorn isomorphisms and the Chern character defect
CHAPTER III Index Theorems 1. Differential operators ; 2. Sobolev spaces and Sobolev theorems ; 3. Pseudodifferential operators ; 4. Elliptic operators and parametrices ; 5. Fundamental results for elliptic operators ; 6. The heat kernel and the index
Notes 13. The Atiyah-Singer Index Theorem
Print version record
Form Electronic book
Author Michelsohn, Marie-Louise, 1941-
ISBN 1400883911
9781400883912