Description 
1 online resource (xi, 271 pages) : illustrations 
Series 
Control engineering 

Control engineering (BirkhĂ¤user)

Contents 
Introduction  Basics of Electricity and Magnetism  Electric Circuits and Devices  AC Power Systems  Power System Dynamics: An Introduction  Power System Dynamics: Bifurcation Behavior  Elements of Power Systems Control  Power System Management  Appendix A: Ship Hybrid Electric Propulsion System  Appendix B: Computational Tools  References  Index 
Summary 
This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and loadfrequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples workedout in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, capacitors, and memristors, along with an examination of basic circuit mathematical models and formulations. AC power systems are considered next, in which models for their basic components are derived. The following chapters address power system dynamics using both the ordinary differential equation and differentialalgebraic equation models of a power network, as well as bifurcation analysis and the behavior of a network as it approaches voltage instability. Two classic control problems  voltage regulation and loadfrequency control  are then described, including the coordination of economic dispatch with loadfrequency control. Finally, power system control problems involving operation in highly nonlinear regimes and subjected to discrete failure modes are discussed. Power System Dynamics and Control will appeal to practicing power system engineers, control systems engineers interested in power systems, and graduate students in these areas. Because it provides sufficient information about their modelling and behavior, control engineers without a background in power systems will also find it to be a valuable resource 
Bibliography 
Includes bibliographical references and index 
Notes 
Online resource; title from PDF title page (SpringerLink, viewed June 10, 2016) 
Subject 
Electric power systems.


Electric power systems  Control.

Form 
Electronic book

Author 
MiuMiller, Karen, author

ISBN 
0817646736 

0817646744 (electronic bk.) 

9780817646738 

9780817646745 (electronic bk.) 

(print) 
