Limit search to available items
Record 3 of 10
Previous Record Next Record
Book Cover
E-book
Author Dicks, Andrew, author.

Title Fuel cell systems explained / Andrew L Dicks, Griffith University, Brisbane, Australia, David A J Rand, CSIRO Energy Flagship, Melbourne, Australia
Edition Third edition
Published Hoboken, NJ, USA : Wiley, [2018]

Copies

Description 1 online resource
Contents Intro -- Title Page -- Copyright Page -- Contents -- Brief Biographies -- Preface -- Acknowledgments -- Acronyms and Initialisms -- Symbols and Units -- Chapter 1 Introducing Fuel Cells -- 1.1 Historical Perspective -- 1.2 Fuel-Cell Basics -- 1.3 Electrode Reaction Rates -- 1.4 Stack Design -- 1.5 Gas Supply and Cooling -- 1.6 Principal Technologies -- 1.7 Mechanically Rechargeable Batteries and Other Fuel Cells -- 1.7.1 Metal-Air Cells -- 1.7.2 Redox Flow Cells -- 1.7.3 Biological Fuel Cells -- 1.8 Balance-of-Plant Components -- 1.9 Fuel-Cell Systems: Key Parameters -- 1.10 Advantages and Applications -- Further Reading -- Chapter 2 Efficiency and Open-Circuit Voltage -- 2.1 Open-Circuit Voltage: Hydrogen Fuel Cell -- 2.2 Open-Circuit Voltage: Other Fuel Cells and Batteries -- 2.3 Efficiency and Its Limits -- 2.4 Efficiency and Voltage -- 2.5 Influence of Pressure and Gas Concentration -- 2.5.1 Nernst Equation -- 2.5.2 Hydrogen Partial Pressure -- 2.5.3 Fuel and Oxidant Utilization -- 2.5.4 System Pressure -- 2.6 Summary -- Further Reading -- Chapter 3 Operational Fuel-Cell Voltages -- 3.1 Fundamental Voltage: Current Behaviour -- 3.2 Terminology -- 3.3 Fuel-Cell Irreversibilities -- 3.4 Activation Losses -- 3.4.1 The Tafel Equation -- 3.4.2 The Constants in the Tafel Equation -- 3.4.3 Reducing the Activation Overpotential -- 3.5 Internal Currents and Fuel Crossover -- 3.6 Ohmic Losses -- 3.7 Mass-Transport Losses -- 3.8 Combining the Irreversibilities -- 3.9 The Electrical Double-Layer -- 3.10 Techniques for Distinguishing Irreversibilities -- 3.10.1 Cyclic Voltammetry -- 3.10.2 AC Impedance Spectroscopy -- 3.10.3 Current Interruption -- Further Reading -- Chapter 4 Proton-Exchange Membrane Fuel Cells -- 4.1 Overview -- 4.2 Polymer Electrolyte: Principles of Operation -- 4.2.1 Perfluorinated Sulfonic Acid Membrane
4.2.2 Modified Perfluorinated Sulfonic Acid Membranes -- 4.2.3 Alternative Sulfonated and Non-Sulfonated Membranes -- 4.2.4 Acid-Base Complexes and Ionic Liquids -- 4.2.5 High-Temperature Proton Conductors -- 4.3 Electrodes and Electrode Structure -- 4.3.1 Catalyst Layers: Platinum-Based Catalysts -- 4.3.2 Catalyst Layers: Alternative Catalysts for Oxygen Reduction -- 4.3.2.1 Macrocyclics -- 4.3.2.2 Chalcogenides -- 4.3.2.3 Conductive Polymers -- 4.3.2.4 Nitrides -- 4.3.2.5 Functionalized Carbons -- 4.3.2.6 Heteropolyacids -- 4.3.3 Catalyst Layer: Negative Electrode -- 4.3.4 Catalyst Durability -- 4.3.5 Gas-Diffusion Layer -- 4.4 Water Management -- 4.4.1 Hydration and Water Movement -- 4.4.2 Air Flow and Water Evaporation -- 4.4.3 Air Humidity -- 4.4.4 Self-Humidified Cells -- 4.4.5 External Humidification: Principles -- 4.4.6 External Humidification: Methods -- 4.5 Cooling and Air Supply -- 4.5.1 Cooling with Cathode Air Supply -- 4.5.2 Separate Reactant and Cooling Air -- 4.5.3 Water Cooling -- 4.6 Stack Construction Methods -- 4.6.1 Introduction -- 4.6.2 Carbon Bipolar Plates -- 4.6.3 Metal Bipolar Plates -- 4.6.4 Flow-Field Patterns -- 4.6.5 Other Topologies -- 4.6.6 Mixed Reactant Cells -- 4.7 Operating Pressure -- 4.7.1 Technical Issues -- 4.7.2 Benefits of High Operating Pressures -- 4.7.2.1 Current -- 4.7.3 Other Factors -- 4.8 Fuel Types -- 4.8.1 Reformed Hydrocarbons -- 4.8.2 Alcohols and Other Liquid Fuels -- 4.9 Practical and Commercial Systems -- 4.9.1 Small-Scale Systems -- 4.9.2 Medium-Scale for Stationary Applications -- 4.9.3 Transport System Applications -- 4.10 System Design, Stack Lifetime and Related Issues -- 4.10.1 Membrane Degradation -- 4.10.2 Catalyst Degradation -- 4.10.3 System Control -- 4.11 Unitized Regenerative Fuel Cells -- Further Reading -- Chapter 5 Alkaline Fuel Cells -- 5.1 Principles of Operation
5.2 System Designs -- 5.2.1 Circulating Electrolyte Solution -- 5.2.2 Static Electrolyte Solution -- 5.2.3 Dissolved Fuel -- 5.2.4 Anion-Exchange Membrane Fuel Cells -- 5.3 Electrodes -- 5.3.1 Sintered Nickel Powder -- 5.3.2 Raney Metals -- 5.3.3 Rolled Carbon -- 5.3.4 Catalysts -- 5.4 Stack Designs -- 5.4.1 Monopolar and Bipolar -- 5.4.2 Other Stack Designs -- 5.5 Operating Pressure and Temperature -- 5.6 Opportunities and Challenges -- Further Reading -- Chapter 6 Direct Liquid Fuel Cells -- 6.1 Direct Methanol Fuel Cells -- 6.1.1 Principles of Operation -- 6.1.2 Electrode Reactions with a Proton-Exchange Membrane Electrolyte -- 6.1.3 Electrode Reactions with an Alkaline Electrolyte -- 6.1.4 Anode Catalysts -- 6.1.5 Cathode Catalysts -- 6.1.6 System Designs -- 6.1.7 Fuel Crossover -- 6.1.8 Mitigating Fuel Crossover: Standard Techniques -- 6.1.9 Mitigating Fuel Crossover: Prospective Techniques -- 6.1.10 Methanol Production -- 6.1.11 Methanol Safety and Storage -- 6.2 Direct Ethanol Fuel Cells -- 6.2.1 Principles of Operation -- 6.2.2 Ethanol Oxidation, Catalyst and Reaction Mechanism -- 6.2.3 Low-Temperature Operation: Performance and Challenges -- 6.2.4 High-Temperature Direct Ethanol Fuel Cells -- 6.3 Direct Propanol Fuel Cells -- 6.4 Direct Ethylene Glycol Fuel Cells -- 6.4.1 Principles of Operation -- 6.4.2 Ethylene Glycol: Anodic Oxidation -- 6.4.3 Cell Performance -- 6.5 Formic Acid Fuel Cells -- 6.5.1 Formic Acid: Anodic Oxidation -- 6.5.2 Cell Performance -- 6.6 Borohydride Fuel Cells -- 6.6.1 Anode Catalysts -- 6.6.2 Challenges -- 6.7 Application of Direct Liquid Fuel Cells -- Further Reading -- Chapter 7 Phosphoric Acid Fuel Cells -- 7.1 High-Temperature Fuel-Cell Systems -- 7.2 System Design -- 7.2.1 Fuel Processing -- 7.2.2 Fuel Utilization -- 7.2.3 Heat-Exchangers -- 7.2.3.1 Designs -- 7.2.3.2 Exergy Analysis -- 7.2.3.3 Pinch Analysis
7.3 Principles of Operation -- 7.3.1 Electrolyte -- 7.3.2 Electrodes and Catalysts -- 7.3.3 Stack Construction -- 7.3.4 Stack Cooling and Manifolding -- 7.4 Performance -- 7.4.1 Operating Pressure -- 7.4.2 Operating Temperature -- 7.4.3 Effects of Fuel and Oxidant Composition -- 7.4.4 Effects of Carbon Monoxide and Sulfur -- 7.5 Technological Developments -- Further Reading -- Chapter 8 Molten Carbonate Fuel Cells -- 8.1 Principles of Operation -- 8.2 Cell Components -- 8.2.1 Electrolyte -- 8.2.2 Anode -- 8.2.3 Cathode -- 8.2.4 Non-Porous Components -- 8.3 Stack Configuration and Sealing -- 8.3.1 Manifolding -- 8.3.2 Internal and External Reforming -- 8.4 Performance -- 8.4.1 Influence of Pressure -- 8.4.2 Influence of Temperature -- 8.5 Practical Systems -- 8.5.1 Fuel Cell Energy (USA) -- 8.5.2 Fuel Cell Energy Solutions (Europe) -- 8.5.3 Facilities in Japan -- 8.5.4 Facilities in South Korea -- 8.6 Future Research and Development -- 8.7 Hydrogen Production and Carbon Dioxide Separation -- 8.8 Direct Carbon Fuel Cell -- Further Reading -- Chapter 9 Solid Oxide Fuel Cells -- 9.1 Principles of Operation -- 9.1.1 High-Temperature (HT) Cells -- 9.1.2 Low-Temperature (IT) Cells -- 9.2 Components -- 9.2.1 Zirconia Electrolyte for HT-Cells -- 9.2.2 Electrolytes for IT-Cells -- 9.2.2.1 Ceria -- 9.2.2.2 Perovskites -- 9.2.2.3 Other Materials -- 9.2.3 Anodes -- 9.2.3.1 Nickel-YSZ -- 9.2.3.2 Cathode -- 9.2.3.3 Mixed Ionic-Electronic Conductor Anode -- 9.2.4 Cathode -- 9.2.5 Interconnect Material -- 9.2.6 Sealing Materials -- 9.3 Practical Design and Stacking Arrangements -- 9.3.1 Tubular Design -- 9.3.2 Planar Design -- 9.4 Performance -- 9.5 Developmental and Commercial Systems -- 9.5.1 Tubular SOFCs -- 9.5.2 Planar SOFCs -- 9.6 Combined-Cycle and Other Systems -- Further Reading -- Chapter 10 Fuels for Fuel Cells -- 10.1 Introduction -- 10.2 Fossil Fuels
10.2.1 Petroleum -- 10.2.2 Petroleum from Tar Sands, Oil Shales and Gas Hydrates -- 10.2.3 Coal and Coal Gases -- 10.2.4 Natural Gas and Coal-Bed Methane (Coal-Seam Gas) -- 10.3 Biofuels -- 10.4 Basics of Fuel Processing -- 10.4.1 Fuel-Cell Requirements -- 10.4.2 Desulfurization -- 10.4.3 Steam Reforming -- 10.4.4 Carbon Formation and Pre-Reforming -- 10.4.5 Internal Reforming -- 10.4.5.1 Indirect Internal Reforming (IIR) -- 10.4.5.2 Direct Internal Reforming (DIR) -- 10.4.6 Direct Hydrocarbon Oxidation -- 10.4.7 Partial Oxidation and Autothermal Reforming -- 10.4.8 Solar-Thermal Reforming -- 10.4.9 Sorbent-Enhanced Reforming -- 10.4.10 Hydrogen Generation by Pyrolysis or Thermal Cracking of Hydrocarbons -- 10.4.11 Further Fuel Processing: Removal of Carbon Monoxide -- 10.5 Membrane Developments for Gas Separation -- 10.5.1 Non-Porous Metal Membranes -- 10.5.2 Non-Porous Ceramic Membranes -- 10.5.3 Porous Membranes -- 10.5.4 Oxygen Separation -- 10.6 Practical Fuel Processing: Stationary Applications -- 10.6.1 Industrial Steam Reforming -- 10.6.2 Fuel-Cell Plants Operating with Steam Reforming of Natural Gas -- 10.6.3 Reformer and Partial Oxidation Designs -- 10.6.3.1 Conventional Packed-Bed Catalytic Reactors -- 10.6.3.2 Compact Reformers -- 10.6.3.3 Plate Reformers and Microchannel Reformers -- 10.6.3.4 Membrane Reactors -- 10.6.3.5 Non-Catalytic Partial Oxidation Reactors -- 10.6.3.6 Catalytic Partial Oxidation Reactors -- 10.7 Practical Fuel Processing: Mobile Applications -- 10.8 Electrolysers -- 10.8.1 Operation of Electrolysers -- 10.8.2 Applications -- 10.8.3 Electrolyser Efficiency -- 10.8.4 Photoelectrochemical Cells -- 10.9 Thermochemical Hydrogen Production and Chemical Looping -- 10.9.1 Thermochemical Cycles -- 10.9.2 Chemical Looping -- 10.10 Biological Production of Hydrogen -- 10.10.1 Introduction
Summary Since publication of the first edition of Fuel Cell Systems Explained, three compelling drivers have supported the continuing development of fuel cell technology. These are: the need to maintain energy security in an energy-hungry world, the desire to move towards zero-emission vehicles and power plants, and the mitigation of climate change by lowering of CO2 emissions. New fuel cell materials, enhanced stack performance and increased lifetimes are leading to the emergence of the first truly commercial systems in applications that range from fork-lift trucks to power sources for mobile phone towers. Leading vehicle manufacturers have embraced the use of electric drive-trains and now see hydrogen fuel cells complementing advanced battery technology in zero-emission vehicles. After many decades of laboratory development, a global but fragile fuel cell industry is bringing the first commercial products to market. This thoroughly revised edition includes several new sections devoted to, for example, fuel cell characterisation, improved materials for low-temperature hydrogen and liquid-fuelled systems, and real-world technology implementation
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Fuel cells.
TECHNOLOGY & ENGINEERING -- Mechanical.
Fuel cells
Form Electronic book
Author Rand, D. A. J. (David Anthony James), 1942- author.
LC no. 2017058097
ISBN 9781118706961
111870696X
9781118706978
1118706978
9781118706985
1118706986
9781118706992
1118706994
9781523123551
1523123559