Limit search to available items
Book Cover
E-book

Title Geometric and topological methods for quantum field theory : proceedings of the 2009 Villa de Leyva summer school / edited by Alexander Cardona, Iván Contreras, Andrés F. Reyes-Lega
Published Cambridge : Cambridge University Press, 2013

Copies

Description 1 online resource
Contents Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues
1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises
2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle
3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern -- Weil forms; discrepancies
3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern -- Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation
Summary "Based on lectures given at the renowed Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Geometric quantization.
Quantum field theory -- Mathematics
SCIENCE -- Mathematical Physics.
SCIENCE -- Waves & Wave Mechanics.
Quanta, Teoría de los
Geometric quantization
Quantum field theory -- Mathematics
Form Electronic book
Author Cardona, Alexander, editor
Contreras, Iván, 1985- editor.
Reyes-Lega, Andrés F., 1973- editor.
ISBN 9781107341821
1107341825
9781139208642
1139208640
9781299634862
1299634869
9781107345577
110734557X
9781107348073
1107348072
1107236681
9781107236684
1107344328
9781107344327
1107349125
9781107349124
1107357691
9781107357693