Limit search to available items
Book Cover
E-book
Author Ranade, Vivek V

Title Hydrodynamic Cavitation : Devices, Design and Applications
Published Newark : John Wiley & Sons, Incorporated, 2022
©2023

Copies

Description 1 online resource (355 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Hydrodynamic Cavitation -- 1.1 Hydrodynamic Cavitation -- 1.2 Hydrodynamic Cavitation Devices -- 1.3 Applications of Hydrodynamic Cavitation -- 1.4 Organization of the Book -- References -- Part II Hydrodynamic Cavitation Devices -- Chapter 2 Hydrodynamic Cavitation Devices Based on Axial/Linear Flow -- 2.1 Introduction -- 2.2 Orifice-Based Devices -- 2.3 Venturi-Based Devices -- 2.4 Enhancing Performance of Orifice/Venturi-Based Hydrodynamic Cavitation Devices -- 2.5 Summary and Outlook -- References -- Chapter 3 Hydrodynamic Cavitation Devices Based on Rotational/Swirling Flows -- 3.1 Rotor-Stator Hydrodynamic Cavitation Devices -- 3.2 Vortex-Based Cavitation Devices -- 3.2.1 Vortex Cavitation -- 3.2.2 Vortex Models -- 3.2.3 Vortex Cavitation Devices -- 3.3 Devices Based on Combinations of Linear and Swirling Flows -- 3.4 Summary and Outlook -- References -- Part III Characterizing and Modeling of Cavitation Devices -- Chapter 4 Experimental Characterization of Hydrodynamic Cavitation Devices -- 4.1 Experimental Set-up for Characterization of Hydrodynamic Cavitation Devices -- 4.1.1 Holding Tank -- 4.1.2 Pump -- 4.1.3 Hydrodynamic Cavitation Device -- 4.1.4 Piping Arrangements/Fittings -- 4.1.5 In-line Sensors -- 4.2 Identification of Inception of Hydrodynamic Cavitation -- 4.3 Characterizing Overall Process Performance -- 4.4 Conclusions -- References -- Chapter 5 Modeling of Hydrodynamic Cavitation-Based Processes -- 5.1 Introduction -- 5.2 Empirical Models -- 5.2.1 Pseudo-reaction Kinetics Model -- 5.2.2 Per-pass Performance Model -- 5.2.3 Data-Driven Models -- 5.3 Physics-Based Models -- 5.3.1 Cavity Dynamics Models -- 5.3.1.1 Model Equations Governing Single-Bubble Dynamics -- 5.3.1.2 Estimation of Generation of Hydroxyl Radicals
5.3.1.3 Estimation of Hammer Pressure/Jet Velocity Due to Collapse -- 5.3.1.4 Illustrative Results from Cavity Dynamics Models -- 5.3.2 Multi-scale/Multi-layer Models for Simulating Performance of Cavitation Processes -- 5.4 Modeling of Heterogeneous Systems Treated with HC -- 5.5 Summary and Outlook -- References -- Part IV Applications of Hydrodynamic Cavitation -- Chapter 6 Disinfection of Water -- 6.1 Introduction -- 6.2 Conventional Methods of Disinfection -- 6.2.1 Major Drawbacks in Continuing the Use of Conventional Methods -- 6.2.2 Emerging Newer Methods of Disinfection -- 6.3 Disinfection of Water by Cavitation -- 6.3.1 Cavitation Process Principle -- 6.3.2 Present Status -- 6.3.3 Hydrodynamic Cavitation and Cavitation Devices/Reactors -- 6.3.4 Kinetics of Disinfection in Hydrodynamic Cavitation -- 6.4 Hybrid Methods of Disinfection Involving Cavitation -- 6.4.1 Process Integration-Conventional -- 6.4.2 Cavitation with Hydrogen Peroxide Addition -- 6.4.3 Cavitation with Ozone Addition -- 6.4.4 Cavitation with Aeration or Oxygen -- 6.5 Hybrid Hydrodynamic Cavitation Technology Using Natural Oils -- 6.5.1 Mechanism of Disinfection in Hydrodynamic Cavitation- Conventional vs. Hybrid Processes -- 6.5.2 Effect of Temperature -- 6.6 Process Economics -- 6.6.1 Cost Comparison of Different Processes -- 6.6.2 Typical Cost Calculation for Vortex Diode as Reactor in Hybrid Process Using Natural Oils -- 6.7 New Developments and Future Potential -- 6.7.1 Applications in Drinking Water Treatment -- 6.7.2 Applications in Sewage Water Treatment -- 6.7.3 Applications in Ballast Water Treatment -- 6.8 Summary -- References -- Chapter 7 Wastewater Treatment -- 7.1 Introduction -- 7.2 Hydrodynamic Cavitation for Wastewater Treatment -- 7.3 Performance of Hydrodynamic Cavitation-based Wastewater Treatment -- 7.3.1 Influence of Device Design
7.3.2 Influence of Operating Parameters -- 7.3.2.1 Inlet Concentration of Pollutant -- 7.3.2.2 Pressure Drop Across Cavitation Device -- 7.3.2.3 Downstream Pressure -- 7.3.2.4 Operating pH -- 7.3.2.5 Operating Temperature -- 7.3.2.6 Influence of Dissolved Gases/Sparged Gases -- 7.4 Enhancing the per-pass Performance: Augmentation by Hybrid Processes -- 7.4.1 Coupling of HC with AOPs Using Alternative Energy Sources -- 7.4.1.1 UV-assisted HC -- 7.4.1.2 Plasma-based HC -- 7.4.2 Coupling of HC with Chemical-based AOPs -- 7.4.2.1 Hydrogen Peroxide (H2O2) Treatment -- 7.4.2.2 Ozone (O3) Treatment -- 7.4.2.3 Peroxonation (Hydrogen Peroxide-H2O2 + Ozone-O3) -- 7.4.3 Augmenting Hydrodynamic Cavitation by Catalyst-based AOPs -- 7.4.3.1 Fenton's Process -- 7.4.3.2 Photocatalysis -- 7.5 Summary and Outlook -- References -- Chapter 8 Pre-treatment of Biomass for Enhancing Biofuel Yields -- 8.1 Introduction -- 8.2 Hydrodynamic Cavitation for Enhancing Bioethanol Yield -- 8.3 Hydrodynamic Cavitation for Enhancing Biogas Production -- 8.3.1 Wastewater and Sludge -- 8.3.2 Lignocellulosic Biomass (LCB) -- 8.4 Net Energy Gains -- 8.5 Summary and Path Forward -- References -- Chapter 9 Other Applications of Hydrodynamic Cavitation -- 9.1 Introduction -- 9.2 Gas-Liquid Applications -- 9.3 Liquid-Liquid Applications -- 9.3.1 Oxidative Desulfurization -- 9.3.2 Emulsification -- 9.3.3 Microalgal Oil Extraction -- 9.3.4 Transesterification of Oils to Produce Biodiesel -- 9.3.5 Food (Juice and Milk) Sterilization -- 9.4 Solid-Liquid Applications -- 9.4.1 Beer Brewing -- 9.4.2 Bioactive Compound Extraction -- 9.4.3 Particle Size Reduction -- 9.5 Summary, Outlook, and Conclusions -- References -- Part V Status and Path Forward -- Chapter 10 Summary and Outlook -- 10.1 Devices, Experimental Characterization, and Modeling of Hydrodynamic Cavitation
10.2 Applications of Hydrodynamic Cavitation -- References -- Index -- EULA
Notes Description based on publisher supplied metadata and other sources
Form Electronic book
Author Bhandari, Vinay M
Nagarajan, Sanjay
Sarvothaman, Varaha P
Simpson, Alister T
ISBN 3527346449
9783527346448
3527822879
9783527822874