Limit search to available items
Book Cover
E-book
Author Xu, Peng

Title Heat and Mass Transfer in Drying of Porous Media
Published Milton : CRC Press LLC, 2019

Copies

Description 1 online resource (225 pages)
Series Advances in Drying Science and Technology Ser
Advances in Drying Science and Technology Ser
Contents Cover; Half Title; Series Page; Title Page; Copyright Page; Dedication; Contents; Preface; Contributors; Editors; Chapter 1: Heat and Mass Transfer Phenomena in Porous Media -- Application to Drying; CONTENTS; 1.1. Introduction; 1.2. Drying Models; 1.2.1. Liquid Diffusion Model; 1.2.2. Variations of the Diffusion Model; 1.3. Porous Media Model; 1.3.1. Single-Phase Flow through Porous Media; 1.3.2. Multiphase Flow through Porous Media; 1.3.2.1. Single-Fluid Model; 1.3.2.2. Multi-Fluid Model; 1.3.3. Conjugate Models; 1.3.3.1. Convective Drying; 1.3.3.2. Microwave Drying
1.3.3.3. Electrohydrodynamic Drying1.4. Concluding Remarks; References; Chapter 2: Diffusivity in Drying of Porous Media; CONTENTS; 2.1. Introduction to Drying Technology and Porous Media; 2.1.1. Drying Technology; 2.1.1.1. Natural Sun Drying and Solar Drying; 2.1.1.2. Hot-Air Drying; 2.1.1.3. Osmotic Dehydration; 2.1.1.4. Freeze Drying; 2.1.1.5. Hybrid Drying/Combined Drying; 2.1.2. Drying of Porous Media; 2.1.2.1. Drying Porous Media (Fruits); 2.1.2.2. Drying of Porous Media (Coal); 2.1.2.3. Drying of Porous Media (Foods and Vegetables); 2.1.2.4. Drying of Porous Media (Woods)
2.1.2.5. Drying of Porous Media (Ceramic)2.2. Diffusion during Drying of Porous Media; 2.2.1. Fick's First and Second Law; 2.2.2. Moisture and Thermal Diffusion; 2.3. Diffusion Models in Drying of Porous Media; 2.4. Conclusions; References; Chapter 3: Multiscale Modeling of Porous Media; CONTENTS; 3.1. Introduction; 3.2. Fractal Models for Heat and Mass Transfer; 3.2.1. Heat Transfer; 3.2.2. Gas Diffusion; 3.2.3. Fluid Flow; 3.3. Fractal in Drying Porous Media; 3.3.1. Microstructure of Porous Media; 3.3.2. Macroscopic Morphology; 3.3.3. Fractal Model for Drying; 3.4. Concluding Remarks
AcknowledgementsReferences; Chapter 4: Heat and Mass Transfer Simulation of Intensification Drying Technologies: Current Status and Future Trends; CONTENTS; 4.1. Introduction: Background and Driving Forces; 4.2. Numerical Simulation is a Powerful Tool; 4.3. Development and Application of Numerical Simulation in Intensification Drying Technologies; 4.3.1. Air-impingement Drying; 4.3.1.1. Numerical Simulation Methods in Impinging Jets; 4.3.1.2. The Numerical Simulation of Impingement Configuration to Intensify Drying; 4.3.1.3. The Numerical Simulation of the Airflow Pattern to Intensify Drying
4.3.2. Freeze Drying4.3.2.1. The Development of a Numerical Simulation of Freeze Drying; 4.3.2.2. The Numerical Simulation of Technological Parameters to Intensify Drying; 4.3.3. Radio Frequency Drying; 4.3.3.1. Numerical Simulation Development of Radio Frequency Heating; 4.3.3.2. Application of Numerical Simulation to Enhance Uniformity Radio Frequency Heating; 4.3.3.3. Numerical Simulation of the Combination of Radio Frequency and Conventional Drying; 4.3.3.4. Numerical Simulation of Radio Frequency/Vacuum Drying; 4.3.4. Spray Drying
Notes 4.3.4.1. The Numerical Simulation of Equipment Design for Improving Droplets Movement
Restricted: Printing from this resource is governed by The Legal Deposit Libraries (Non-Print Works) Regulations (UK) and UK copyright law currently in force. WlAbNL
Print version record
Form Electronic book
Author Sasmito, Agus P
Mujumdar, Arun S
LC no. 2019010641
ISBN 9781351019217
135101921X
9781351019200
1351019201