Limit search to available items
Book Cover
E-book
Author Zhang, Bangwei, 1936- author.

Title Physical fundamentals of nanomaterials / Bangwei Zhang
Published Oxford : Chemical Industry Press, [2018]
©2018
Online access available from:
ScienceDirect eBooks    View Resource Record  

Copies

Description 1 online resource
Series Micro and Nano Technologies series
Contents Machine generated contents note: ch. 1 Introduction -- 1.1. Nanomaterial Age -- 1.2. What Are Nanomaterials? -- 1.3. History of Nanomaterial Development -- 1.3.1. Germination Stage -- 1.3.2. Preliminary Preparation Stage -- 1.3.3. Rapid-Development Stage -- 1.3.4. Industrial and Commercial Application Stage -- 1.4. Importance of Nanomaterials -- 1.4.1. Nanotechnology Programs of Leading Countries -- 1.4.2. Nanotechnology Investment Among Leading Countries -- 1.4.3. Analysis of the Importance of Nanotechnology -- 1.5. Potential Problems of Nanomaterials -- 1.6. Purpose of This Book: Fundamentals of Nanomaterial Physics -- References -- ch. 2 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes -- 2.1. Principles of Physical Vapor Deposition -- 2.1.1. Nucleation -- 2.1.2. Growth -- 2.2. Physical Vapor Deposition -- 2.2.1. Electrical Resistance Heating Method -- 2.2.2. Plasma Heating Method -- 2.2.3. Laser Heating Method -- 2.3. Chemical Vapor Deposition -- 2.3.1. CVD Thermodynamics and Kinetics -- 2.3.2. CVD Process Technology for Nanomaterial Preparation -- 2.3.3. Catalytic CVD and CNT Preparation -- 2.4. Filtered Cathodic Vacuum Arc Deposition -- 2.4.1. Magnetic Filtration and FCVA Devices -- 2.4.2. Examples of Filtered Cathodic Vacuum Deposition Films -- 2.5. Comparison of Various Vapor Deposition Methods -- References -- ch. 3 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared in the Liquid Phase -- 3.1. Precipitation -- 3.1.1. Coprecipitation and Fractional Precipitation -- 3.1.2. Homogeneous Precipitation -- 3.2. Sol-Gel Method -- 3.2.1. Sol-Gel Procedure -- 3.2.2. Sol-Gel Reaction Mechanism -- 3.2.3. Examples of Sol-Gel Prepared Nanomaterials -- 3.3. Chemical-Reduction Method -- 3.3.1. Chemical-Reduction Preparation Technology -- 3.3.2. Chemical-Reduction Reaction Mechanisms -- 3.3.3. Preparation of Crystalline Nanomaterials via Chemical Reduction -- 3.4. Comparison of Various Liquid Nanoparticle Preparation Methods -- References -- ch. 4 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Solid-Phase Syntheses -- 4.1. Mechanical Alloying -- 4.1.1. Ball Mill -- 4.1.2. MA Process Parameters -- 4.1.3. MA-Prepared Nanopowder Formation Mechanisms -- 4.1.4. Examples of Nanomaterials Synthesized via Mechanical Alloying -- 4.2. Nanomaterial Preparation via Solid-Phase Methods -- 4.2.1. Preparation of Bulk Nanomaterials via Solid-Phase Methods -- 4.2.2. Amorphous Nanocrystallization -- 4.3. Microstructures and Defects in Body Nanomaterials -- 4.3.1. Grains in Body Nanomaterials -- 4.3.2. Grain Boundaries in Body Nanomaterials -- 4.3.3. Defects in Body Nanomaterials -- References -- ch. 5 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly -- 5.1. What Is Self-Assembly? -- 5.2. Types and Common Characteristics of Self-Assembly Mechanisms -- 5.2.1. Types of Self-Assembly Mechanisms -- 5.2.2. Common Characteristics of Self-Assembly -- 5.3. Nanomaterial Fabrication via Self-Assembly -- 5.3.1. Metal and Alloy Components -- 5.3.2. Semiconductor Components -- 5.3.3. Polymer Supermolecules and Biomolecular Components -- 5.4. Template-Based Nanomaterial Fabrication -- 5.4.1. Fabrication of Ordered Nanohole Templates -- 5.4.2. Metal and Alloy Nanomaterials Prepared via Templated Self-Assembly -- 5.4.3. Preparation of Semiconductor Nanomaterials via Self-Assembly -- References -- ch. 6 Mechanical Properties of Nanomaterials -- 6.1. Elasticity of Nanomaterials -- 6.2. Strengths, Hardnesses and Hall-Petch Relationships in Nanomaterials -- 6.2.1. Experimental Strength Data -- 6.2.2. Relationship Between Hardness and Hall-Petch Effects -- 6.3. Nanomaterial Fracture and Fatigue -- 6.3.1. Facture Strength and Toughness -- 6.3.2. Fatigue -- 6.4. Nanomaterial Creep and Superplasticity -- 6.4.1. Creep -- 6.4.2. Superplasticity -- 6.5. Deformation and Fracture Mechanisms in Nanomaterials -- 6.5.1. Nanomaterial Deformation Mechanisms -- 6.5.2. Nanomaterial Fracture Mechanisms -- References -- ch. 7 Thermal Properties of Nanomaterials -- 7.1. Melting Point -- 7.1.1. Elevated and Lowered Nanomaterial Melting Points -- 7.1.2. Nanomaterial Melting Point Simulations -- 7.1.3. Melting Enthalpy and Entropy in Nanomaterials -- 7.1.4. Nanoalloy Phase Diagrams -- 7.2. Thermal Conductivity -- 7.2.1. Experimental Measurement of Nanomaterial Thermal Conductivities -- 7.2.2. Theoretical Simulation of Nanomaterial Thermal Conductivity -- 7.3. Specific Heat -- 7.3.1. Debye Temperatures of Nanomaterials -- 7.3.2. Specific Heats of Nanomaterials -- 7.4. Thermal Expansion -- References -- ch. 8 Optical Properties of Nanomaterials -- 8.1. Light Absorption of Nanomaterials -- 8.1.1. Instances of Light Absorption Nanomaterials -- 8.1.2. Red- and Blueshift Phenomenon of Light Absorption -- 8.2. Colors of Nanomaterials -- 8.3. Light-Emission of Nanomaterials -- 8.3.1. Quantum Yield -- 8.3.2. Photoluminescence of Nanomaterials -- 8.3.3. Electroluminescence of Nanomaterials -- 8.4. Magnetooptical Properties of Nanomaterials -- 8.4.1. Magnetooptical Effect -- 8.4.2. Magnetooptical Effect of Metal Nanoparticles and Nanoparticle Films -- 8.4.3. Magnetooptical Effect of Oxide Nanoparticles -- 8.4.4. Magnetooptical Effect of Composite Structure of Amorphous Magnetic Nanoparticles -- References -- ch. 9 Electrical Properties of Nanometer Materials -- 9.1. Resistivity of Nanomaterials -- 9.1.1. Resistivity of Metal Nanomaterials -- 9.1.2. Resistivity of Alloy Nanomaterials -- 9.1.3. Resistivity of Semiconductor Nanomaterials -- 9.1.4. Resistivity of Oxide Nanomaterials -- 9.2. Theoretical Simulation of Resistivity for Nanomaterials -- 9.2.1. FS and MS Resistivity Theory -- 9.2.2. Theoretical Calculation of Resistivity of Metal Nanowires -- 9.2.3. Empirical Formula for Nanomaterial Resistivity -- 9.3. Thermoelectric Conversion Efficiency of Nanomaterials -- 9.3.1. Thermoelectric Conversion Efficiency and Related Parameters -- 9.3.2. Thermoelectric Conversion Efficiency of Nanomaterials -- 9.3.3. Theoretical Calculations of Conversion Efficiency for Nanothermoelectric Materials -- 9.4. Superconductivity of Nanomaterials -- 9.4.1. Superconductivity of Nanoparticle -- 9.4.2. Superconductivity of Nanofilms -- 9.4.3. Nanowire Superconductivity -- References -- ch. 10 Magnetic Properties of Nanomaterials -- 10.1. Magnetic Moment of Nanometer Magnetic Materials -- 10.1.1. Magnetic Moment of 3D Atomic Group Ferromagnetic Metals -- 10.1.2. Magnetic Moment of 3D Ferromagnetic Clusters of Superlattice -- 10.1.3. Magnetic Moments of Nonferromagnetic Three Metal Clusters -- 10.2. Curie Temperature of Nanomagnetic Materials -- 10.2.1. Reduction of Curie Temperature -- 10.2.2. Curie Temperature of Superlattice -- 10.3. Magnetization and Coercivity of Nanometer Magnetic Materials -- 10.3.1. Magnetization -- 10.3.2. Coercivity -- 10.4. Magnetoresistance and Giant Magnetoresistance of Nanometer Magnetic Materials -- 10.4.1. Magnetoresistance and Anisotropic Magnetoresistance -- 10.4.2. Magnetoresistance of Nanometer Manganese Perovskite -- 10.4.3. Giant Magnetoresistance -- References
Bibliography Includes bibliographical references and index
Notes Vendor-supplied metadata
Subject Nanostructured materials.
Nanostructures
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Nanostructured materials
Form Electronic book
ISBN 9780124104792
0124104797