Limit search to available items
Book Cover
Book
Author Young, Robert J. (Robert Joseph)

Title Introduction to polymers / Robert J. Young and Peter A. Lovell
Edition Third edition
Published Boca Raton : CRC Press, [2011]
©2011

Copies

Location Call no. Vol. Availability
 W'PONDS  547.7 You/Itp 2011  AVAILABLE
 MELB  547.7 You/Itp 2011  AVAILABLE
Description xx, 668 pages : illustrations ; 26 cm
Contents Machine generated contents note: pt. I Concepts, Nomenclature and Synthesis of Polymers -- ch. 1 Concepts and Nomenclature -- 1.1.The Origins of Polymer Science and the Polymer Industry -- 1.2.Basic Definitions and Nomenclature -- 1.2.1.Skeletal Structure -- 1.2.2.Homopolymers -- 1.2.3.Copolymers -- 1.2.4.Classification of Polymers -- 1.3.Molar Mass and Degree of Polymerization -- 1.3.1.Molar Mass Distribution -- 1.3.2.Molar Mass Averages -- Problems -- Further Reading -- General Historical and Introductory Reading -- Macromolecular Nomenclature -- ch. 2 Principles of Polymerization -- 2.1.Introduction -- 2.2.Classification of Polymerization Reactions -- 2.3.Monomer Functionality and Polymer Skeletal Structure -- 2.4.Functional Group Reactivity and Molecular Size: The Principle of Equal Reactivity -- Problems -- Further Reading -- ch. 3 Step Polymerization -- 3.1.Introduction -- 3.2.Linear Step Polymerization -- 3.2.1.Polycondensation --
Contents note continued: 3.2.1.1.Synthesis of Polyesters, Polyamides and Polyethers by Polycondensation -- 3.2.1.2.Synthesis of Engineering and High-Performance Polymers by Polycondensation -- 3.2.1.3.Synthesis of Conducting Polymers by Polycondensation -- 3.2.1.4.Synthesis of Polysiloxanes by Polycondensation -- 3.2.2.Polyaddition -- 3.2.2.1.Synthesis of Linear Polyurethanes and Polyureas by Polyaddition -- 3.2.2.2.Other Polymers Prepared by Polyaddition -- 3.2.3.Theoretical Treatment of Linear Step Polymerization -- 3.2.3.1.Carothers Theory -- 3.2.3.2.Statistical Theory -- 3.2.3.3.Kinetics of Step Polymerization -- 3.2.4.Ring Formation -- 3.2.5.Linear Step Polymerization Processes -- 3.3.Non-Linear Step Polymerization -- 3.3.1.Network Polymers -- 3.3.1.1.Formaldehyde-Based Resins -- 3.3.1.2.Epoxy Resins -- 3.3.1.3.Network Polyurethanes -- 3.3.2.Gelation Theory -- 3.3.2.1.Carothers Theory of Gelation -- 3.3.2.2.Statistical Theory of Gelation --
Contents note continued: 3.3.2.3.Validity of the Carothers and Statistical Theories of Gelation -- 3.3.3.Dendrimcrs -- 3.3.3.1.Synthesis of Dendrimers -- 3.3.3.2.Applications of Dendrimers -- 3.3.4.Hyperbranched Polymers -- 3.3.4.1.Synthesis of Hyperbranched Polymers by Non-Linear Step Polymerization -- Problems -- Further Reading -- General Reading -- Dendrimers -- Hyperbranched Polymers -- ch. 4 Radical Polymerization -- 4.1.Introduction to Radical Polymerization -- 4.2.The Chemistry of Conventional Free-Radical Polymerization -- 4.2.1.Initiation -- 4.2.2.Propagation -- 4.2.3.Termination -- 4.2.4.Chain Transfer -- 4.2.4.1.Chain Transfer with Small Molecules -- 4.2.4.2.Chain Transfer to Polymer -- 4.3.Kinetics of Conventional Free-Radical Polymerization -- 4.3.1.Rate of Polymerization -- 4.3.2.Number-Average Degree of Polymerization -- 4.3.3.Features of the Steady-State Equations for Rp and () -- 4.3.4.Diffusion Constraints on Rates of Propagation and Termination --
Contents note continued: 4.3.5.Effects of Chain Transfer -- 4.3.5.1.Determination of Transfer Constants -- 4.3.6.Catalytic Chain Transfer -- 4.3.7.Inhibition and Retardation -- 4.3.8.Molar Mass Distribution -- 4.3.9.Determination of Individual Rate Coefficients -- 4.3.9.1.Determination of f and kd -- 4.3.9.2.Early Approaches to Determining kp and kt -- 4.3.9.3.Modern Approaches to Determining kp and kt -- 4.3.10.Effects of Temperature -- 4.3.10.1.Ceiling Temperature -- 4.4.Free-Radical Polymerization Processes -- 4.4.1.Bulk Polymerization -- 4.4.2.Solution Polymerization -- 4.4.3.Suspension Polymerization -- 4.4.4.Emulsion Polymerization -- 4.4.4.1.Particle Nucleation (Interval I) -- 4.4.4.2.Particle Growth (Intervals II and III) -- 4.4.4.3.Simple Kinetics of Emulsion Polymerization -- 4.4.4.4.Benefits and Applications of Emulsion Polymerization -- 4.4.4.5.Miniemulsion Polymerization -- 4.4.4.6.Microgels -- 4.4.5.Strategies for Performing Polymerization Processes --
Contents note continued: 4.5.Reversible-Deactivation (̀Living') Radical Polymerizations -- 4.5.1.Nitroxide-Mediated Radical Polymerization -- 4.5.1.1.Kinetics of Nitroxide-Mediated Radical Polymerization -- 4.5.1.2.Side Reactions in Nitroxide-Mediated Radical Polymerization -- 4.5.2.Atom-Transfer Radical Polymerization -- 4.5.2.1.Kinetics of ATRP -- 4.5.2.2.Initiators, Transition Metals and Ligands for ATRP -- 4.5.2.3.Alternative Strategies for Initiation of ATRP -- 4.5.3.Reversible-Addition-Fragmentation Chain-Transfer Radical Polymerization -- 4.5.3.1.Kinetics of RAFT Polymerization -- 4.5.3.2.RAFT Agents -- 4.6.Non-Linear Radical Polymerizations -- 4.6.1.Non-Linear Radical Polymerizations Involving Crosslinking Monomers -- 4.6.2.Non-Linear Radical Polymerizations Involving Unsaturated Polymers -- 4.6.2.1.Crosslinking of Unsaturated Resins -- 4.6.2.2.Branching and Crosslinking during Polymerization of 1,3-Dienes -- Problems -- Further Reading -- General Reading --
Contents note continued: Emulsion Polymerization -- Reversible-Deactivation Radical Polymerization -- ch. 5 Ionic Polymerization -- 5.1.Introduction to Ionic Polymerization -- 5.2.Cationic Polymerization -- 5.2.1.Conventional Cationic Polymerizations -- 5.2.1.1.Initiation of Cationic Polymerization -- 5.2.1.2.Propagation in Cationic Polymerization -- 5.2.1.3.Termination and Chain Transfer in Cationic Polymerization -- 5.2.1.4.Kinetics of Conventional Cationic Polymerization -- 5.2.1.5.Effect of Temperature -- 5.2.1.6.Solvent and Counter-Ion Effects -- 5.2.1.7.Practical Considerations -- 5.2.2.Reversible-Deactivation (Living) Cationic Polymerizations -- 5.2.2.1.Initiation Systems for Reversible-Deactivation Cationic Polymerization -- 5.2.2.2.Kinetics of Reversible-Deactivation Cationic Polymerizations -- 5.2.2.3.Practical Considerations -- 5.3.Anionic Polymerization -- 5.3.1.Polymerization of Styrene in Liquid NH, Initiated by KNFL --
Contents note continued: 5.3.2.Polymerization without Termination-Living Anionic Polymerization -- 5.3.2.1.Organometallic Initiators for Living Anionic Polymerization -- 5.3.2.2.Electron Transfer Initiation for Living Anionic Polymerization -- 5.3.2.3.Kinetics of Living Anionic Polymerization -- 5.3.2.4.Molar Mass Distributions of Polymers Produced by Living Polymerization -- 5.3.2.5.Deactivation of Carbanionic Living Polymers -- 5.3.2.6.Solvent and Counter-Ion Effects in Living Anionic Polymerizations -- 5.3.2.7.Practical Considerations for Living Anionic Polymerization -- 5.4.Group-Transfer Polymerization -- 5.4.1.Mechanism of GTP -- 5.4.2.Practical Considerations and Uses of GTP -- 5.4.3.AldolGTP -- Problems -- Further Reading -- ch. 6 Stereochemistry and Coordination Polymerization -- 6.1.Introduction to Stereochemistry of Polymerization -- 6.2.Tacticity of Polymers -- 6.3.Geometric Isomerism in Polymers Prepared from Conjugated Dienes --
Contents note continued: 6.4.Ziegler-Natta Coordination Polymerizaiion -- 6.4.1.Ziegler-Natta Catalysts -- 6.4.2.Propagation: Monomer Insertion at Group I-III Metal-Carbon Bonds -- 6.4.3.Propagation: Monomer Insertion at Transition Metal-Carbon Bonds -- 6.4.4.Propagation: Mechanistic Overview -- 6.4.5.Termination of Chain Growth -- 6.4.6.Kinetics -- 6.4.7.Practical Considerations -- 6.5.Metallocene Coordination Polymerization -- 6.5.1.Metallocene Catalysts -- 6.5.2.Mechanism of Polymerization with Zirconocene: MAO Catalysts -- 6.5.3.Control of Propagation Stereochemistry with Zirconocenes -- 6.5.4.Kinetics of Metallocene Polymerization -- 6.5.5.Other Metallocene and Metallocene-Related Catalysts -- 6.5.6.Practical Considerations -- Problems -- Further Reading -- ch. 7 Ring-Opening Polymerization -- 7.1.Introduction to Ring-Opening Polymerization -- 7.2.Cationic Ring-Opening Polymerization -- 7.2.1.Cationic Ring-Opening Polymerization of Epoxides --
Contents note continued: 7.2.2.Cationic Ring-Opening Polymerization of Lactones -- 7.2.3.Cationic Ring-Opening Polymerization of Lactams -- 7.2.4.Cationic Ring-Opening Polymerization of Cyclic Siloxanes -- 7.3.Anionic Ring-Opening Polymerization -- 7.3.1.Anionic Ring-Opening Polymerization of Epoxides -- 7.3.2.Anionic Ring-Opening Polymerization of Lactones -- 7.3.3.Anionic Ring-Opening Polymerization of Lactams -- 7.3.4.Anionic Ring-Opening Polymerization of Cyclic Siloxanes -- 7.4.Free-Radical Ring-Opening Polymerization -- 7.5.Ring-Opening Metathesis Polymerization -- 7.5.1.Chemistry of ROMP -- 7.5.2.Applications of ROMP -- Problems -- Further Reading -- General Reading -- Free-Radical Ring-Opening Polymerization -- Ring-Opening Metathesis Polymerization -- ch. 8 Specialized Methods of Polymer Synthesis -- 8.1.Introduction -- 8.2.Solid-State Topochemical Polymerization -- 8.3.Polymerization by Oxidative Coupling -- 8.3.1.Polymerization of Phenols by Oxidative Coupling --
Contents note continued: 8.3.2.Polymerization of Aniline, Pyrrole and Thiophene by Oxidative Coupling -- 8.4.Precursor Routes to Intractable Polymers -- 8.5.Supramolecular Polymerization (Polyassociation) -- Problems -- Further Reading -- General Reading -- Synthesis of Conducting Polymers -- Supramolecular Polymerization -- ch. 9 Copolymerization -- 9.1.Introduction -- 9.2.Step Copolymerization -- 9.3.Chain Copolymerization -- 9.3.1.Copolymer Composition Equation -- 9.3.2.Monomer Reactivity Ratios and Copolymer Composition/ Structure -- 9.3.3.Copolymer Composition Drift -- 9.3.4.Evaluation of Monomer Reactivity Ratios -- 9.3.5.Free-Radical Copolymerization -- 9.3.5.1.The Q-e Scheme -- 9.3.6.Reversible-Deactivation Radical Copolymerization -- 9.3.7.Ionic Copolymerization -- 9.3.8.Ziegler-Natta Coordination Copolymerization -- 9.3.9.Metallocene Coordination Copolymerization -- 9.3.10.Other Types of Chain Copolymerization -- 9.4.Block Copolymer Synthesis --
Contents note continued: 9.4.1.Synthesis of Segmented and Alternating Copolymers by Step Polymerization -- 9.4.2.Synthesis of Block Copolymers by Sequential Polymerization -- 9.4.2.1.Synthesis of Block Copolymers by Living Anionic Polymerization -- 9.4.2.2.Synthesis of Block Copolymers by Reversible-Deactivation (Living) Cationic Polymerization -- 9.4.2.3.Synthesis of Block Copolymers by Reversible-Deactivation (Living) Radical Polymerization -- 9.4.2.4.Synthesis of Block Copolymers by Other Methods of Living Polymerization -- 9.4.2.5.Synthesis of Block Copolymers by Active-Centre Transformation -- 9.4.3.Synthesis of Block Copolymers by Coupling of Polymer Chains -- 9.4.3.1.Synthesis of Block Copolymers by Click-Coupling of Homopolymer Chains -- 9.4.4.Synthesis of Non-Linear Block Copolymers -- 9.5.Graft Copolymer Synthesis -- 9.5.1.Synthesis of Graft Copolymers by Polymerization from a Backbone Polymer --
Contents note continued: 9.5.2.Synthesis of Graft Copolymers by Copolymerization with Macromonomers -- 9.5.3.Synthesis of Graft Copolymers by Coupling of Polymer Chains to a Backbone Polymer -- Problems -- Further Reading -- pt. II Characterization of Polymers -- ch. 10 Theoretical Description of Polymers in Solution -- 10.1.Introduction -- 10.2.Thermodynamics of Polymer Solutions -- 10.2.1.Thermodynamics of Ideal Solutions -- 10.2.2.Flory-Huggins Theory -- 10.2.3.Partial Molar Quantities and Chemical Potential -- 10.2.4.Dilute Polymer Solutions -- 10.2.5.The Solubility Parameter Approach -- 10.3.Chain Dimensions -- 10.3.1.Freely-Jointed Chains -- 10.3.2.Effects of Bond Angle and Short-Range Steric Restrictions -- 10.3.3.Effects of Long-Range Steric Interactions: Chains with Excluded Volume -- 10.4.Frictional Properties of Polymer Molecules in Dilute Solution -- 10.4.1.Frictional Coefficients of Polymer Molecules --
Contents note continued: 10.4.2.Hydrodynamic Volume and Intrinsic Viscosity in the Non-Draining Limit -- 10.4.3.Diffusion of Polymer Molecules in the Non-Draining Limit -- 10.4.4.Solution Behaviour of Polyelectrolytes -- Problems -- Further Reading -- ch. 11 Number-Average Molar Mass -- 11.1.Introduction to Measurements of Number-Average Molar Mass -- 11.2.Membrane Osmometry -- 11.2.1.Osmosis and Chemical Potential -- 11.2.2.Measurement of Osmotic Pressure -- 11.3.Vapour Pressure Osmometry -- 11.4.Ebulliometry and Cryoscopy -- 11.5.End-Group Analysis -- 11.6.Effects of Low Molar Mass Impurities upon -- Problems -- Further Reading -- ch. 12 Scattering Methods -- 12.1.Introduction -- 12.2.Static Light Scattering -- 12.2.1.Light Scattering by Small Molecules -- 12.2.2.Light Scattering by Liquids and Solutions of Small Molecules -- 12.2.3.Light Scattering by Large Molecules in Solution -- 12.2.4.Effect of Molar Mass Dispersity -- 12.2.5.Static Light Scattering Measurements --
Contents note continued: 12.2.6.Light Scattering by Multicomponent Systems -- 12.3.Dynamic Light Scattering -- 12.4.Small-Angle X-Ray and Neutron Scattering -- Problems -- Further Reading -- ch. 13 Frictional Properties of Polymers in Solution -- 13.1.Introduction -- 13.2.Dilute Solution Viscometry -- 13.2.1.Intrinsic Viscosity -- 13.2.2.Interpretation of Intrinsic Viscosity Data -- 13.2.3.Measurement of Solution Viscosity -- 13.3.Ultracentrifugation -- Problems -- Further Reading -- ch. 14 Molar Mass Distribution -- 14.1.Introduction -- 14.2.Fractionation -- 14.2.1.Phase-Separation Behaviour of Polymer Solutions -- 14.2.2.Theory of Fractionation by Phase Separation of Dilute Polymer Solutions -- 14.2.3.Procedures for Fractionation -- 14.3.Gel Permeation Chromatography -- 14.3.1.Separation by Size Exclusion -- 14.3.2.Calibration and Evaluation of Molar Mass Distributions -- 14.3.3.Universal Calibration -- 14.3.4.Porous Gels and Eluants for GPC --
Contents note continued: 14.3.5.Practical Aspects of GPC -- 14.4.Field-Flow Fractionation -- 14.4.1.FFF Techniques -- 14.4.2.Theory of Solute Separation by FFF -- 14.4.3.Applications of FFF -- 14.5.Mass Spectroscopy -- 14.5.1.Mass Spectra of Polymers -- 14.5.2.Methods of Soft Ionization for Polymers -- 14.5.2.1.Electrospray Ionization -- 14.5.2.2.Matrix-Assisted Laser Desorption/Ionization -- 14.5.3.Time-of-Flight Mass Spectroscopy -- 14.5.3.1.Principles of M ALDI Time-of-Flight Mass Spectrometry -- 14.5.3.2.Evaluation of Molar Mass Distribution from Time-of-Flight Mass Spectra -- 14.5.4.Molar Mass Distributions Obtained by MALDI Mass Spectroscopy -- Problems -- Further Reading -- General Reading -- Field-Flow Fractionation -- Mass Spectroscopy -- ch. 15 Chemical Composition and Molecular Microstructure -- 15.1.Introduction -- 15.2.Principles of Spectroscopy -- 15.2.1.Uses of Electromagnetic Radiation in Polymer Science --
Contents note continued: 15.2.2.The Beer-Lambert Law for Absorption of Electromagnetic Radiation -- 15.3.Ultraviolet and Visible Light Absorption Spectroscopy -- 15.3.1.Applications of UV-vis Spectroscopy in Polymer Science -- 15.3.2.Practical Aspects of UV-vis Spectroscopy -- 15.4.Infrared Spectroscopy -- 15.4.1.Applications of IR Spectroscopy in Polymer Science -- 15.4.2.Practical Aspects of IR Spectroscopy -- 15.5.Raman Spectroscopy -- 15.5.1.Applications of Raman Spectroscopy in Polymer Science -- 15.5.2.Practical Aspects of Raman Spectroscopy -- 15.6.Nuclear Magnetic Resonance Spectroscopy -- 15.6.1.Analysis of Molecular Structure and Composition by NMR Spectroscopy -- 15.6.2.Analysis of End Groups and Branch Points by NMR Spectroscopy -- 15.6.3.Determination of Molecular Microstructure by NMR Spectroscopy -- 15.6.3.1.Determination of Tacticity -- 15.6.3.2.Determination of Repeat Unit Sequence Distributions in Copolymers --
Contents note continued: 15.6.4.Other Uses of NMR Spectroscopy in Polymer Science -- 15.6.5.Practical Aspects of NMR Spectroscopy -- 15.7.Mass Spectroscopy -- 15.7.1.Elucidation of Structural Features by Mass Spectroscopy -- 15.7.2.Other Uses of Mass Spectroscopy in Polymer Science -- Problems -- Further Reading -- General Reading -- Vibrational Spectroscopy -- Nuclear Magnetic Resonance Spectroscopy -- Mass Spectroscopy -- pt. III Phase Structure and Morphology of Bulk Polymers -- ch. 16 The Amorphous State -- 16.1.Introduction -- 16.1.1.Structure in Amorphous Polymers -- 16.2.The Glass Transition -- 16.2.1.Thermodynamics of the Glass Transition -- 16.2.2.Free Volume -- 16.3.Factors Controlling the Tg -- 16.3.1.Chemical Structure -- 16.3.2.Copolymerisation -- 16.3.3.Molecular Architecture -- 16.3.4.Film Thickness -- 16.4.Macromolecular Dynamics -- 16.4.1.The Rouse-Bueche Theory -- 16.4.2.The de Gennes Reptation Theory -- Problems -- Further Reading --
Contents note continued: ch. 17 The Crystalline State -- 17.1.Introduction -- 17.1.1.Crystallinity in Polymers -- 17.1.2.Crystal Structure and Unit Cell -- 17.2.Determination of Crystal Structure -- 17.2.1.X-Ray Diffraction -- 17.2.1.1.Polymer Single Crystals -- 17.2.1.2.Semi-Crystalline Polymers -- 17.2.2.Polymer Crystal Structures -- 17.2.3.Factors Determining Crystal Structure -- 17.2.3.1.Polyethylene -- 17.2.3.2.Polytetrafluoroethylene -- 17.2.3.3.Vinyl Polymers -- 17.2.3.4.Polyamides -- 17.3.Polymer Single Crystals -- 17.3.1.Solution-Grown Single Crystals -- 17.3.2.Solid-State Polymerized Single Crystals -- 17.4.Semi-Crystalline Polymers -- 17.4.1.Spherulitcs -- 17.4.2.Degree of Crystallinity -- 17.4.3.Crystal Thickness and Chain Extension -- 17.4.4.Crystallization with Orientation -- 17.4.5.Polymer Fibres -- 17.5.Liquid Crystalline Polymers -- 17.5.1.Classes of Liquid Crystals -- 17.5.2.Polymer Liquid Crystals -- 17.5.2.1.Thermotropic Systems --
Contents note continued: 17.5.2.2.Lyotropic Systems -- 17.6.Defects in Crystalline Polymers -- 17.6.1.Point Defects -- 17.6.2.Dislocations -- 17.6.3.Other Defects -- 17.7.Crystallization -- 17.7.1.General Considerations -- 17.7.2.Overall Crystallization Kinetics -- 17.7.3.Molecular Mechanisms of Crystallization -- 17.8.Melting -- 17.8.1.Differential Scanning Calorimetry -- 17.8.2.Melting of Polymer Crystals -- 17.8.3.Factors Affecting 7 -- 17.8.3.1.Chemical Structure -- 17.8.3.2.Molar Mass and Branching -- 17.8.3.3.Copolymers -- 17.8.4.Relationship between Tm and 7S -- Problems -- Further Reading -- ch. 18 Multicomponent Polymer Systems -- 18.1.Introduction -- 18.2.Polymer Blends -- 18.2.1.Thermodynamics of Polymer Blends -- 18.2.2.Phase Behaviour -- 18.2.3.Glass Transition Behaviour -- 18.2.4.Compatibilization of Polymer Blends -- 18.3.Block Copolymers -- 18.3.1.Thermodynamics of Block Copolymer Phase Behaviour -- 18.3.2.Morphology of Block Copolymers --
Contents note continued: 18.3.2.1.Transmission Electron Microscopy -- 18.3.2.2.Small-Angle X-Ray Scattering -- 18.3.3.Thermoplastic Elastomers -- Problems -- Further Reading -- pt. IV Properties of Bulk Polymers -- ch. 19 Elastic Deformation -- 19.1.Introduction -- 19.2.Elastic Deformation -- 19.2.1.Stress -- 19.2.2.Strain -- 19.2.3.Relationship between Stress and Strain -- 19.3.Elastic Deformation of Polymers -- 19.3.1.Deformation of a Polymer Chain -- 19.3.2.Polymer Crystal Moduli -- 19.3.3.Elastic Deformation of Semi-Crystalline Polymers -- Problems -- Further Reading -- ch. 20 Viscoelasticity -- 20.1.Introduction -- 20.2.Viscoelastic Mechanical Models -- 20.2.1.Maxwell Model -- 20.2.2.Voigt Model -- 20.2.3.Standard Linear Solid -- 20.3.Boltzmann Superposition Principle -- 20.4.Dynamic Mechanical Testing -- 20.5.Frequency Dependence of Viscoelastic Behaviour -- 20.6.Transitions and Polymer Structure -- 20.7.Time-Temperature Superposition -- 20.8.Effect of Entanglements --
Contents note continued: 20.9.Non-Linear Viscoelasticity -- Problems -- Further Reading -- ch. 21 Elastomers -- 21.1.Introduction -- 21.1.1.General Considerations -- 21.1.2.Vulcanization -- 21.1.3.Mechanical Behaviour -- 21.2.Thermodynamics of Elastomer Deformation -- 21.3.Statistical Theory of Elastomer Deformation -- 21.3.1.Entropy of an Individual Chain -- 21.3.2.Deformation of the Polymer Network -- 21.3.3.Limitations and Use of the Theory -- 21.3.3.1.Entanglements -- 21.3.3.2.Chain Ends -- 21.4.Stress-Strain Behaviour of Elastomers -- 21.5.Factors Affecting Mechanical Behaviour -- 21.5.1.Swelling -- 21.5.2.Strain-Induced Crystallization -- Problems -- Further Reading -- ch. 22 Yield and Crazing -- 22.1.Introduction -- 22.2.Phenomenology of Yield -- 22.2.1.Definitions -- 22.2.2.Necking and the Considere Construction -- 22.2.3.Rate and Temperature Dependence -- 22.3.Yield Criteria -- 22.3.1.Tresca Yield Criterion -- 22.3.2.Von Mises Yield Criterion --
Contents note continued: 22.3.3.Pressure-Dependent Yield Behaviour -- 22.4.Deformation Mechanisms -- 22.4.1.Theoretical Shear Stress -- 22.4.2.Shear Yielding in Glassy Polymers -- 22.4.2.1.Stress-Induced Increase in Free Volume -- 22.4.2.2.Application of the Eyring Theory to Yield in Polymers -- 22.4.2.3.Molecular Theories of Yield -- 22.4.3.Plastic Deformation of Polymer Crystals -- 22.4.3.1.Slip -- 22.4.3.2.Dislocation Motion -- 22.4.3.3.Twinning -- 22.4.3.4.Martensitic Transformations -- 22.4.4.Plastic Deformation of Semi-Crystalline Polymers -- 22.5.Crazing -- 22.5.1.Craze Yielding -- 22.5.2.Craze Criteria -- 22.5.3.Crazing in Glassy Polymers -- Problems -- Further Reading -- ch. 23 Fracture and Toughening -- 23.1.Introduction -- 23.2.Fundamentals of Fracture -- 23.2.1.Theoretical Tensile Strength -- 23.2.2.Molecular Failure Processes -- 23.2.2.1.Bond Rupture -- 23.2.2.2.Effect of Molar Mass -- 23.3.Mechanics of Fracture -- 23.3.1.Brittle Fracture and Flaws --
Contents note continued: 23.3.2.Linear Elastic Fracture Mechanics -- 23.3.2.1.Definitions -- 23.3.2.2.Fracture Mechanics Testing -- 23.3.2.3.Crack Propagation in Poly(Methyl Methacrylate) -- 23.3.3.Tearing of Elastomers -- 23.3.4.Ductile Fracture -- 23.4.Fracture Phenomena -- 23.4.1.Ductile-Brittle Transitions -- 23.4.2.Impact -- 23.4.3.Fatigue -- 23.4.4.Environmental Fracture -- 23.5.Toughened Polymers -- 23.5.1.Mechanical Behaviour of Rubber-Toughened Polymers -- 23.5.2.Mechanisms of Rubber-Toughening -- 23.5.2.1.Transmission Electron Microscopy -- 23.5.2.2.Volume Change Measurements -- Problems -- Further.Reading -- ch. 24 Polymer Composites -- 24.1.Introduction to Composite Materials -- 24.2.Matrix Materials -- 24.3.Types of Reinforcement -- 24.3.1.Particles -- 24.3.2.Fibres -- 24.3.2.1.Glass Fibres -- 24.3.2.2.Carbon Fibres -- 24.3.2.3.High-Modulus Polymer Fibres -- 24.4.Composite Composition -- 24.5.Particulate Reinforcement -- 24.5.1.Packing Geometries --
Contents note continued: 24.5.2.Elastic Deformation -- 24.5.3.Fracture -- 24.6.Fibre Reinforcement -- 24.6.1.Composite Geometry -- 24.6.1.1.Fibre Packing -- 24.6.1.2.Fibre Arrangements -- 24.6.2.Continuous Fibres -- 24.6.2.1.Axial Stiffness -- 24.6.2.2.Transverse Stiffness -- 24.6.3.Discontinuous Fibres -- 24.6.3.1.Elastic Stress Transfer -- 24.6.3.2.Experimental Determination of Fibre Stress Distributions -- 24.6.4.Fracture -- 24.6.4.1.Continuous and Aligned Fibres -- 24.6.4.2.Discontinuous Fibres -- 24.7.Nanocomposites -- 24.7.1.Nanoparticles -- 24.7.1.1.Carbon Black -- 24.7.1.2.Nanosilica -- 24.7.2.Nanoplatelets -- 24.7.2.1.Clays -- 24.7.2.2.Graphene -- 24.7.3.Carbon Nanotubes -- Problems -- Further Reading -- ch. 25 Electrical Properties -- 25.1.Introduction to Electrical Properties -- 25.2.Dielectric Properties -- 25.2.1.Molecular Polarizability -- 25.2.2.Dielectric Measurements -- 25.2.3.Dielectric Relaxations -- 25.2.4.Dielectric Breakdown -- 25.3.Conduction in Polymers --
Contents note continued: 25.3.1.Measurement of Conductivity -- 25.3.2.Conducting Composites -- 25.3.3.Ionic Conduction -- 25.3.4.Inherently Conducting Polymers -- 25.3.5.Polyacetylene -- 25.3.5.1.Structure of Polyacetylene -- 25.3.5.2.Preparation of Conducting Polyacetylene -- 25.3.5.3.Electronic Structure of Doped Polyacetylene -- 25.4.Polymer Electronics -- 25.4.1.Polymer-Based Light-Emitting Diodes -- 25.4.2.Polymer-Based Solar Cells -- 25.4.3.Polymer-Based Transistors -- 25.4.4.Polymer-Based Sensors -- Problems -- Further Reading
Notes Previous ed.: published as by R.J. Young and P.A. Lovell, London: Chapman & Hall, 1991
Bibliography Includes bibliographical references and index
Subject Polymers.
Polymerization.
Author Lovell, P. A. (Peter A.)
LC no. 2011293267
ISBN 9780849339295
0849339294
Other Titles Polymers