Limit search to available items
Book Cover
E-book

Title Advanced nanomaterials and nanocomposites for bioelectrochemical systems / edited by Nabisab Mujawar Mubarak, Abdul SattarJatoi, Shaukat Ali Mazari, Sabzoi Nizamuddin
Published Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge MA : Elsevier, [2023]

Copies

Description 1 online resource
Series Micro and nano technologies series
Micro & nano technologies.
Contents IFC -- Half title -- Title -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Foreword -- Preface -- Acknowledgments -- Chapter 1 Introduction to the microbial electrochemical system -- 1.1 Electrochemical cells and bioelectrochemical systems (BESs) -- 1.1.1 Historical development of BESs -- 1.2 Biological fundamentals of BESs -- 1.3 Electroactive biofilm -- 1.4 Applications of BESs -- 1.5 Electrodes and bioelectrodes -- 1.6 Membranes -- 1.7 Electrochemical cell design -- 1.8 Characterization of BESs -- 1.9 Conclusions and perspectives -- References -- Chapter 2 Electricity generation with the use of microbial electrochemical systems -- 2.1 Introduction to microbial electrochemical systems -- 2.2 Electrogenic organisms -- 2.3 Typical applications for microbial electrogenesis -- 2.3.1 Wastewater treatment and energy generation -- 2.3.2 Hydrogen generation -- 2.3.3 Biosensors -- 2.4 Principles of microbial electrochemical systems: fuel cells (MFCs) and electrolysis cells (MECs) -- 2.4.1 Microbial fuel cell -- 2.4.2 Microbial electrolysis cell -- 2.5 MFC performance: operation parameters -- 2.6 MFC optimization -- 2.6.1 Scaling criteria -- 2.6.2 MFC design: architectures and reported efficiencies -- 2.6.3 State of the art in MFC scaling-up -- 2.7 Challenges to improve MFC performance at real-life scale -- 2.7.1 Manufacturing, cost, carbon footprint, and comparison with clean electricity technologies -- 2.8 Perspectives, the future of MFCs -- 2.9 Concluding remarks -- Acknowledgments -- References -- Chapter 3 Overview of wastewater treatment approaches related to the microbial electrochemical system -- 3.1 Introduction -- 3.2 Current research on wastewater treatment techniques -- 3.3 Comparison between conventional systems and microbial electrochemical systems for wastewater treatment
3.4 Classification of microbial electrochemical systems -- 3.5 Working principle and mechanism microbial electrochemical systems for wastewater treatment -- 3.6 Bottlenecks and troubleshooting involved in MESs -- 3.7 Conclusions and future prospects -- References -- Chapter 4 Synthesis and application of nanocomposite material for microbial fuel cells -- 4.1 Introduction -- 4.2 Synthesis of nanocomposite materials used in microbial fuel cells -- 4.2.1 Hydrothermal synthesis of nanocomposites -- 4.2.2 Sol-gel -- 4.2.3 Chemical reduction -- 4.2.4 Microwaves -- 4.2.5 Sonochemistry -- 4.2.6 Synthesis for polymers -- 4.3 Characterization of nanocomposites materials used as electrodes in microbial fuel cells -- 4.3.1 Structural characterization -- 4.3.2 Electrochemical characterization of nanomaterials -- 4.3.3 Evaluation of nanomaterials in microbial fuel cells -- 4.4 Nanoparticles-based electrodes -- 4.4.1 Anodes -- 4.4.2 Cathodes -- 4.5 Performance of nanomaterials in anodes and cathodes -- 4.6 Conclusions -- References -- Chapter 5 Classification of nanomaterials and nanocomposites for anode material -- 5.1 Introduction -- 5.2 Carbon-based nanomaterials and nanocomposites -- 5.2.1 Carbon nanotubes -- 5.2.2 Graphene and graphene oxide -- 5.2.3 Other carbonaceous nanomaterials and nanocomposites -- 5.3 Transition metal and/or transition metal oxide decorated carbonaceous anode -- 5.3.1 Transition metal modified carbonaceous anodes or transition metal/carbon nanocomposites -- 5.3.2 Transition metal oxide decorated carbonaceous anodes or transition metal oxide/carbon nanocomposites -- 5.3.3 Transition metal and transition metal oxide comodified carbonaceous anodes -- 5.4 Conductive polymers improved carbonaceous nanocomposites -- 5.5 Other nanocomposites (transition metal/transition metal oxide/polymer/carbon/transition metal carbide, etc.)
5.6 Other nanomaterials or nanostructure for improving anode performances -- 5.7 Future challenge of nanomaterial/nanocomposite material -- 5.8 Conclusions -- References -- Chapter 6 Properties of nanomaterials for microbial fuel cell application -- 6.1 Bioelectrochemical energy generation systems principle and types -- 6.2 Components of MFC -- 6.3 Properties of vital components and their intrinsic factors to enhance electricity output -- 6.3.1 Microorganisms -- 6.3.2 Biofilm -- 6.3.3 Electrode -- 6.3.4 Electron transport mechanisms between microorganisms and an electrode -- 6.3.5 Membranes -- 6.3.6 Ion exchange capacity (IEC) -- 6.3.7 Oxygen permeability -- 6.3.8 Membrane conductivity -- 6.4 Different types of nanomaterials in MFC -- 6.4.1 Nanomaterials used for anode modification and their intrinsic properties -- 6.4.2 Carbon materials -- 6.4.3 Metal nanoparticles -- 6.4.4 Transition metal-based nanoparticles (metal sulfide, metal oxide, metal carbide) -- 6.4.5 Polymers -- 6.4.6 Polyelectrolyte modified NMs -- 6.4.7 Nanomaterials used for cathode modification in MFC and their intrinsic properties -- 6.4.8 Nanomaterials used for membrane modification and their intrinsic properties -- 6.5 Outlook and future perspective -- References -- Chapter 7 Advanced nanocomposite material for wastewater treatment in microbial fuel cells -- 7.1 Introduction -- 7.2 Microbial fuel cell (MFC) as an emerging source of energy -- 7.3 Role of nanocomposite materials in MFCs -- 7.3.1 Proton exchange membranes based on nanocomposites -- 7.3.2 Nanocomposite materials for electrode fabrication -- 7.3.3 Application of MFCs in domestic and industrial wastewater treatment -- 7.4 Conclusions and future prospects -- Acknowledgment -- References -- Chapter 8 Nanostructured electrode materials in bioelectrocommunication systems -- 8.1 Introduction -- 8.2 Theory background
8.2.1 Nanostructure -- 8.3 Bioelectrochemical system -- 8.3.1 Bioelectrochemical systems: how they work -- 8.3.2 Extracellular electron transfer (EET) -- 8.4 Bioelectrochemical fuel cell -- 8.4.1 Electron transfer for MFC -- 8.4.2 Healthcare applications with bioelectrochemical systems -- 8.4.3 POC sensing systems -- 8.4.4 Wearable electrochemical sensing systems -- 8.5 Conclusion and future perspectives -- References -- Chapter 9 Nanomaterials supporting biotic processes in bioelectrochemical systems -- 9.1 Introduction -- 9.2 Nanomaterials used in biocell -- 9.2.1 Carbon nanotubes -- 9.2.2 Gold nanoparticles -- 9.2.3 Silver nanoparticles -- 9.2.4 Zinc-modified nanoparticles in MFC activities -- 9.2.5 Others -- 9.3 Toxicity of NPs and toxicity reduction by NPs in MFC -- 9.4 Conclusions -- References -- Chapter 10 Nanomaterials supporting direct electron transport -- 10.1 Introduction -- 10.2 Mechanism of electron transfer-electron release -- 10.2.1 Mechanism of electron transfer-electron uptake -- 10.2.2 Role of the electrode in extracellular electron transfer -- 10.3 The current state of knowledge about electrode-bacteria interactions -- 10.3.1 Materials utilized in the cathode of the MES -- 10.3.2 Carbon-based cathode materials -- 10.3.3 Nanomodified carbon-based cathode materials -- 10.3.4 Photo-active semiconductors modified cathode -- 10.4 Conclusion and future perspectives -- References -- Chapter 11 Nanomaterials supporting oxygen reduction in bio-electrochemical systems -- 11.1 Introduction -- 11.2 Material synthesis and characterization -- 11.2.1 Material synthesis -- 11.2.2 Material characterization -- 11.3 Role of nanomaterials in oxygen reduction in bio-electrochemical systems -- 11.3.1 Carbon-based nanomaterial catalyst -- 11.3.2 Metal-carbon-based nanomaterial catalyst -- 11.3.3 Polymer-based nanomaterial catalyst
11.3.4 Metal/polymer/carbon-based nanomaterial composite catalyst -- 11.4 Chemical kinetics reaction mechanisms -- 11.5 Outlook and challenges -- References -- Chapter 12 Nanomaterials for ion-exchange membranes -- 12.1 Introduction -- 12.2 Ion exchange membranes (IEMs) -- 12.2.1 Types of IEMs -- 12.2.2 Fundamental properties of IEMs -- 12.3 Nanomaterials for IEMs -- 12.3.1 Use of nanomaterials in IEMs -- 12.4 Methods available for nanomaterials incorporation in IEMs -- 12.4.1 Solution blending -- 12.4.2 In situ polymerization -- 12.4.3 Melt mixing -- 12.4.4 In situ sol-gel -- 12.5 Nanomaterials used in IEMs -- 12.5.1 Carbon-based nanomaterials in IEMs -- 12.5.2 Graphene and its varieties in IEMs -- 12.5.3 Oxide-based nanomaterials in IEMs -- 12.5.4 Metal nanoparticle-based IEMs -- 12.6 Factors affecting the performance of nanomaterial incorporated IEMs -- 12.7 Applications of nanomaterial incorporated IEMs -- 12.8 Advantages and disadvantages of nanomaterial incorporated IEMs -- 12.9 Conclusion and future scopes -- References -- Chapter 13 Nanomaterials supporting indirect electron transport -- 13.1 Introduction -- 13.2 Nanomaterials supporting indirect electron transport in bioelectrochemical system -- 13.2.1 Nanomaterials as electron shuttles or redox mediators to facilitate indirect electron transport -- 13.2.2 Anode modification with nanomaterials to support indirect electron transport -- 13.3 Nanomaterials role in indirect electron transport in azo dyes reduction -- 13.3.1 Nanomaterials role in indirect electron transport in bioelectrochemical biosensor -- 13.3.2 Nanomaterials facilitate indirect electron transport for power or bioelectricity generation -- 13.4 Conclusions -- References -- Chapter 14 Techno-economic analysis of microbial fuel cells using different nanomaterials -- 14.1 Introduction -- 14.1.1 MFCs into electricity generation
Summary Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems covers advancements in nanomaterial and nanocomposite applications for microbial fuel cells. One of the advantages of using microbial fuel cells is the simultaneous treatment of wastewater and the generation of electricity from complex organic waste and biomass, which demonstrates that microbial fuel cells are an active area of frontier research. The addition of microorganisms is essential to enhance the reaction kinetics. This type of fuel cell helps to convert complex organic waste into useful energy through the metabolic activity of microorganisms, thereby generating energy. By incorporating nano-scale fillers into the nanocomposite matrix, the performance of the anode material can be improved. This is an important reference source for materials scientists and engineers who want to learn more about how nanotechnology is being used to create more efficient fuel cells. Describes the major nanomaterials and nanocomposites used in microbial fuel cells Explains how microbial fuel cells are being used in renewable energy applications Assesses the challenges of manufacturing nanomaterials for microbial fuel cells on an industrial scale
Bibliography Includes bibliographical references and index
Notes Description based on online resource; title from digital title page (viewed on May 25, 2023)
Subject Fuel cells -- Materials
Nanostructured materials -- Industrial applications
Bioelectrochemistry -- Industrial applications
Fuel cells -- Materials
Form Electronic book
ISBN 9780323910767
0323910769