Limit search to available items
Book Cover
E-book
Author DaCosta, Herbert.

Title Rate Constant Calculation for Thermal Reactions : Methods and Applications
Published Hoboken : John Wiley & Sons, 2011

Copies

Description 1 online resource (360 pages)
Contents Part 1, Methods: Overview of thermochemistry and its application to reaction kinetics / Elke Goos and Alexander Burcat -- Calculation of kinetic data using computational methods / Fernando Cossío -- Quantum instanton evaluation of the kinetic isotope effects and of the temperature dependence of the rate constant / Jiri Vanicek -- Activation energies in computational chemistry : a case study / Michael Busch, Elisabet Ahlberg, and Itai Panas -- No barrier theory : a new approach to calculating rate constants in solution / Peter Guthrie -- Part 2, Minireviews and applications: Quantum chemical and rate constant calculations of thermal isomerizations, decompositions, and ring expansions of organic ring compounds / Faina Dubnikova and Assa Lifshitz -- Challenges in the computation of rate constants for lignin model compounds / Ariana Beste and A.C. Buchanan, III -- Quantum chemistry study on the pyrolysis mechanisms of coal-related model compounds / Baojun Wang, Riguang Zhang and Lixia Ling -- Ab initio kinetic modeling of free-radical polymerization / Michelle L. Coote -- Intermolecular electron transfer reactivity for organic compounds studied using Marcus Cross-rate theory / Stephen F. Nelson and Jack R. Pladziewicz
8.3.1. The Pyrolysis Mechanisms of Oxygen-Containing Model Compounds -- 8.3.1.1. Phenol and Furan -- 8.3.1.2. Benzoic Acid and Benzaldehyde -- 8.3.1.3. Anisole -- 8.3.2. The Pyrolysis Mechanisms of Nitrogen-Containing Model Compounds -- 8.3.2.1. Pyrrole and Indole -- 8.3.2.2. Pyridine -- 8.3.2.3. 2-Picoline -- 8.3.2.4. Quinoline and Isoquinoline -- 8.3.3. The Pyrolysis Mechanisms of Sulfur-Containing Model Compounds -- 8.3.3.1. Thiophene -- 8.3.3.2. Benzenethiol -- 8.4. Conclusion -- References -- 9. Ab Initio Kinetic Modeling of Free-Radical Polymerization -- 9.1. Introduction -- 9.1.1. Free-Radical Polymerization Kinetics -- 9.1.2. Scope of this Chapter -- 9.2. Ab Initio Kinetic Modeling -- 9.2.1. Conventional Kinetic Modeling -- 9.2.2. Ab Initio Kinetic Modeling -- 9.3. Quantum Chemical Methodology -- 9.3.1. Model Systems -- 9.3.2. Theoretical Procedures -- 9.4. Case Study: RAFT Polymerization -- 9.5. Outlook -- References -- 10. Intermolecular Electron Transfer Reactivity for Organic Compounds Studied Using Marcus Cross-Rate Theory -- 10.1. Introduction -- 10.2. Determination of DG! i (fit) Values -- 10.3. Why is the Success of Cross-Rate Theory Surprising -- 10.4. Major Factors Determining Intrinsic Reactivities of Hydrazine Couples -- 10.5. Nonhydrazine Couples -- 10.6. Comparison of?G! i (fit) with?G! i (self) Values -- 10.7. Estimation of Hab from Experimental Exchange Rate Constants and DFT-Computed? -- 10.8. Comparison with Gas-Phase Reactions -- 10.9. Conclusions -- References -- INDEX
Rate Constant Calculation for Thermal Reactions: Methods and Applications -- CONTENTS -- PREFACE -- CONTRIBUTORS -- PART I: METHODS -- 1. Overview of Thermochemistry and Its Application to Reaction Kinetics -- 1.1. History of Thermochemistry -- 1.2. Thermochemical Properties -- 1.3. Consequences of Thermodynamic Laws to Chemical Kinetics -- 1.4. How to Get Thermochemical Values -- 1.4.1. Measurement of Thermochemical Values -- 1.4.2. Calculation of Thermochemical Values -- 1.4.2.1. Quantum Chemical Calculations of Molecular Properties -- 1.4.2.2. Calculation of Thermodynamic Functions from Molecular Properties -- 1.5. Accuracy of Thermochemical Values -- 1.5.1. Standard Enthalpies of Formation -- 1.5.2. Active Thermochemical Tables -- 1.6. Representation of Thermochemical Data for Use in Engineering Applications -- 1.6.1. Representation in Tables -- 1.6.2. Representation with Group Additivity Values -- 1.6.3. Representation as Polynomials -- 1.6.3.1. How to Change?f H298K Without Recalculating NASA Polynomials -- 1.7. Thermochemical Databases -- 1.8. Conclusion -- References -- 2. Calculation of Kinetic Data Using Computational Methods -- 2.1. Introduction -- 2.2. Stationary Points and Potential Energy Hypersurfaces -- 2.3. Calculation of Reaction and Activation Energies: Levels of Theory and Solvent Effects -- 2.3.1. Hartree-Fock and Post-Hartree-Fock Methods -- 2.3.2. Methods Based on Density Functional Theory -- 2.3.3. Computational Treatment of Solvent Effects -- 2.4. Estimate of Relative Free Energies: Standard States -- 2.5. Theoretical Approximate Kinetic Constants and Treatment of Data -- 2.6. Selected Examples -- 2.6.1. Relative Reactivities of Phosphines in Aza-Wittig Reactions -- 2.6.2. Origins of the Stereocontrol in the Staudinger Reaction Between Ketenes and Imines to Form?-Lactams
7. Challenges in the Computation of Rate Constants for Lignin Model Compounds -- 7.1. Lignin: A Renewable Source of Fuels and Chemicals -- 7.1.1. Origin and Chemical Structure -- 7.1.2. Processing Techniques and Challenges -- 7.2. Mechanistic Study of Lignin Model Compounds -- 7.2.1. Experimental Work -- 7.2.2. Computational Work -- 7.3. Computational Investigation of the Pyrolysis of?-O-4 Model Compounds -- 7.3.1. Methodology -- 7.3.1.1. Overview -- 7.3.1.2. Transition State Theory -- 7.3.1.3. Anharmonic Corrections -- 7.3.2. Analytical Kinetic Models -- 7.3.2.1. Parallel Reactions -- 7.3.2.2. Series of First-Order Reactions -- 7.3.2.3. Product Selectivity for the Pyrolysis of PPE -- 7.3.3. Numerical Integration -- 7.4. Case Studies: Substituent Effects on Reactions of Phenethyl Phenyl Ethers -- 7.4.1. Computational Details -- 7.4.2. Initiation: Homolytic Cleavage -- 7.4.3. Hydrogen Abstraction Reactions and?/?-Selectivities -- 7.4.3.1. PPE and PPE Derivatives with Substituents on Phenethyl Group -- 7.4.3.2. PPE and PPE Derivatives with Substituents on Phenyl Group Adjacent to Ether Oxygen -- 7.4.4. Phenyl Rearrangement -- 7.5. Conclusions and Outlook -- Acknowledgments -- Appendix: Summary of Kinetic Parameters -- References -- 8. Quantum Chemistry Study on the Pyrolysis Mechanisms of Coal-Related Model Compounds -- 8.1. Introduction to the Application of Quantum Chemistry Calculation to Investigation on Models of Coal Structure -- 8.2. The Model for Coal Structure and Calculation Methods -- 8.2.1. The Proposal of Local Microstructure Model of Coal -- 8.2.2. Coal-Related Model Compounds Describing the Properties of Coal Pyrolysis -- 8.2.3. The Pyrolysis of Model Compounds Reflecting the Pyrolysis Phenomenon of Coal -- 8.2.4. The Calculation Methods -- 8.3. The Pyrolysis Mechanisms of Coal-Related Model Compounds
Summary Providing an overview of the latest computational approaches to estimate rate constants for thermal reactions, this book addresses the theories behind various first-principle and approximation methods that have emerged in the last twenty years with validation examples. It presents in-depth applications of those theories to a wide range of basic and applied research areas
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Chemical kinetics -- Effect of temperature on -- Mathematics
SCIENCE -- Chemistry -- Physical & Theoretical.
Thermochemie
Kinetik
Reaktionsgeschwindigkeit
Mathematische Methode
Form Electronic book
Author Fan, Maohong.
ISBN 9781118166123
1118166124
9781118166093
1118166094
1283401258
9781283401258