Limit search to available items
Book Cover
Book
Author Jara, Hernan, author

Title Theory of quantitative magnetic resonance imaging / by Hernán Jara, Boston University, USA
Published Singapore : World scientific, [2013]
New Jersey World Scientific, 2013
©2013

Copies

Location Call no. Vol. Availability
 W'PONDS  616.07548 Jar/Toq  AVAILABLE
Description xiv, 250 pages : illustrations ; 24 cm
Contents Machine generated contents note: A.Introduction -- A1.Historical Notes -- A2.Image Processing -- A3.Quantitative Imaging -- A4.Book Organization -- References -- B.Elements Of Imaging Theory -- B1.Introduction -- B2.Imaging as a Mathematical Operation -- B2.1.Spatial Encoding -- B2.2.Spatial Localization: the Voxel Sensitivity Function -- B2.3.Fourier Transform Imaging -- B2.4.Noise -- B3.Objective Measures of Image Quality -- B3.1.Signal-to-Noise Ratio -- B3.2.Spatial (Geometric) Resolution -- B3.3.Contrast-to-Noise Ratio: Pixel Value Resolution -- B3.4.Vulnerability to Artifacts (MRI) -- B3.4.i.Susceptibility artifacts -- B3.4.ii.Motion artifacts -- B3.4.iii.Chemical shift artifacts -- B3.4.iv.Truncation artifacts -- B3.4.v.Aliasing artifacts -- References -- C.Physics Of Quantitative Mri -- Cl.Introduction -- Cl.1.The Different Spatial Scales of qMRI Theory -- Cl.2.The Spatial Scale of the 1H Proton and the Water Molecule -- Cl.3.Spin Packets --
Contents note continued: Cl.4.The Magnetic Fields of MRI -- C2.The Quantum Physics Scale: Magnetic Moments -- C2.1.Elements of Quantum Mechanics -- C2.1.i.The Language of Quantum Theory -- C2.1.ii.Postulates -- C2.2.Solitary 1H-Proton in a Static Magnetic Field -- C2.2.i.Stationary States: Longitudinal Zeeman States -- C2.2.ii.Mixture States: Transverse Magnetic Dipole Moments -- C2.2.iii.The Transverse Spin State -- C2.3.Solitary 1H-Proton in a Time Dependent Magnetic Field -- C2.3.i.The Interaction Schrodinger Equation -- C2.3.ii.Magnetic Moment Dynamics: Differential and Integral Equations of Motion -- C2.3.iii.Integral Equations -- C3.The Semi-Classical NMR Physics Scale: Magnetized Spin Packets -- C3.1.Nuclear Magnetization of Spin Packets -- C3.2.State of Thermal Equilibrium: Statistical Mechanics -- C3.3.NMR Dynamics: The Bloch Equation -- C3.4.The Transverse and Longitudinal Bloch Equations -- C3.5.Bloch Theory: Assumptions and Limitations --
Contents note continued: C3.6.The Bloch-Torrey-Stejskal Equations: Kinetic Effects -- C3.7.The Two-Pool Bloch-Torrey-Stejskal (BTS) Equations: Magnetization Exchange -- C3.8.Relaxation by Magnetization Transfer -- C3.9.The Spin-Lock Bloch Equations -- C3.10.The Semi-Classical Classification Scheme of qNMR-Parameters -- C4.Essential NMR Dynamics -- C4.1.NMR Excitation: Flip Angle and Slice Selection -- C4.1.i.The Resonance Condition -- C4.1.ii.Slice Selection -- C4.2.Inversion Recovery -- C4.3.Magnetization Saturation in Repetitive Pulse Sequences -- C4.4.Free Decay in the Presence of Magnetic Field Gradients: Effects of Diffusion -- C4.5.rf-Refocused Decay: Spin-echoes -- C4.6.Spin-echo: Effects of Anisotropic Diffusion and Flow -- C5.The MR Imaging Scale: Voxels -- C5.1.The MRI Pixel Value Equation: 3D-FT Imaging -- C5.2.The MRI Pixel Value Equation: 2D-FT Imaging -- C5.3.Pixel Value Equation: Exact Integral Form -- C5.4.Voxel-Integrated Pixel Value Equation: Spin-echo --
Contents note continued: C5.5.Voxel-Integrated Pixel Value Equation: Gradient-Echo -- C5.6.Classification of qMRI Parameters -- C6.MRI Pulse Sequences -- C6.1.Basic Concepts -- C6.2.Pulse Sequence Classification -- C6.3.Spatial Encoding Schemes (Scanning Techniques) -- C6.4.Signal Types -- C6.5.Data Acquisition Acceleration Techniques -- C6.5.i.Ultra-short TR Regime -- C6.5.ii.Medium-Short TR Regime -- C6.5.iii.Long TR Regime -- C6.6.Modular Description of Pulse Sequences -- C6.6.i.Pre-Excitation Modules -- C6.6.ii.Post-Excitation Modules -- References -- D.Elements Of Relaxation Theory -- D1.Introduction -- D1.1.Relaxation Fundamentals -- D1.2.Rate Equation Analysis: Two-Level Systems -- D2.Spin Packet Quantum Mechanics -- D2.1.Spin Packet Hamiltonian -- D2.2.Random Field Relaxation: Local Field Equations -- D2.3.The Bloch Equation Connection -- D2.4.Random Field Relaxation -- D2.5.Spectral Density -- D2.6.Relaxation in Liquids: Kinetic Dipolar T1 and T2 Relaxation Mechanisms --
Contents note continued: D2.7.Relaxation by Paramagnetic Solutes -- D2.8.Spin Locking -- D3.Relaxation in Tissue -- D3.1.Spatial Scalability and Exponentiality -- D3.2.Empirical Tissue Relaxometry -- References -- E.Qmri Theory -- E1.Introduction -- E2.qMRI Principles -- E2.1.The Pixel Value Equation (Revisited) -- E2.2.Association of qMRI Parameters with Weighting qCVs: Liquid Pool -- E2.3.The Principle of Differential Weighting -- E3.Parameter Specific qMRI Paradigms -- E3.1.qMRI of the Proton Density: Un-weighting and Pixel Value Calibration -- E3.2.qMRI of Diffusion and Perfusion: Intravoxel Incoherent Motion (IVIM) -- E3.2.i.Diffusion Tensor Imaging (DTI) -- E3.2.ii.Diffusion qMRI Pulse Sequences -- E3.3.qMRI of Flow and Displacement -- E3.4.qMRI of the Longitudinal Relaxation Time (T1) -- E3.4.i.Inversion Recovery Techniques: qCV = TI -- E3.4.ii.Saturation Recovery Techniques: qCV = TR -- E3.4.iii.Variable Nutation Angle Techniques: qCV = FA --
Contents note continued: E3.4.iv.Other T1 qMRI Techniques -- E3.5.qMRI of the Transverse Relaxation Time (T2) -- E3.5.i.Multi-SE (CPMG) Techniques: qCV = TE -- E3.5.ii.Steady State Free Precession Techniques: qCV = FA -- E3.5.iii.Fast Spin-echo Techniques: qCV = TEeff -- E3.6.qMRI of the Reduced Transverse Relaxation Time (T*2) -- E3.7.qMRI of the Semisolid Pool -- E3.7.i.MT-Bloch Equations -- E3.7.ii.The Steady State -- E3.7.iii.The Bound Water Lineshape -- E3.7.iv.Model Parameters -- E3.7.v.Incidental MT Effects in 2D Multislice Imaging -- E3.8.qMRI of Fat -- E3.8.i.Introduction -- E3.8.ii.Fat-Water Interference Phenomena -- E3.9.qMRI of Temperature -- E3.9.i.Proton Resonance Frequency (PRF) -- E3.9.ii.Temperature Mapping via Proton Density -- E3.9.iii.Temperature Mapping via Diffusion Coefficient -- E3.9.iv.Temperature Mapping via T1 -- E3.10.Dynamic Differential Weighting -- E3.10.i.Time Dependent Pixel Value Equation -- E3.10.ii.Tracer Kinetics: non-diffusable tracers --
Contents note continued: E3.10.iii.Tracer Kinetics: diffusable tracer -- E3.10.iv.Arterial Spin Labeling (ASL) -- References -- F.Qmri Processing -- F1.Introduction -- F2.Data Structure and Organization -- F2.1.General Considerations: (Towards) Comprehensive qMRI -- F2.2.Multispectral qMRI Pulse Sequences -- F2.2.i.IR-TrueFISP -- F2.2.ii.Mixed-TSE -- F2.2.iii.QRAP MASTER -- F3.qMRI Algorithms -- F3.1.Mapping Equations -- F3.2.Model-Conforming Algorithms -- F4.qMRI Map Quality -- F4.1.Directly-Acquired Images: Image Quality -- F4.2.Algorithm Fidelity and Nonlinearities -- F4.3.B0 Mapping Techniques -- F4.4.B1 Mapping Techniques -- References -- G.Introduction To Applications Of Qmri -- G1.Introduction -- G2.Image Synthesis: Virtual MRI Scanning -- G3.Characterization of Organs and Tissue Types -- G3.1.qMRI Space -- G3.2.Segmentation -- G3.3.Volumetry and qMRI Spectroscopy
Bibliography Includes bibliographic references and index
Subject Image analysis -- Mathematics.
Image processing -- Mathematics.
Magnetic resonance imaging -- Mathematics.
Magnetic resonance imaging.
LC no. 2013427198
ISBN 9789814295239 (hardback)