Limit search to available items
Book Cover
E-book
Author Privalov, Peter L

Title Microcalorimetry of macromolecules : the physical basis of biological structures / Peter L. Privalov
Published Hoboken, N.J. : Wiley, ©2012
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource (x, 393 pages, 16 unnumbered pages of plates) : illustrations (some color)
Series Wiley series in protein and peptide science Microcalorimetry of macromolecules
Contents 880-01 MICROCALORIMETRY OF MACROMOLECULES; CONTENTS; 1: INTRODUCTION; 2: METHODOLOGY; 2.1. THERMODYNAMIC BASICS OF CALORIMETRY; 2.1.1. Energy; 2.1.2. Enthalpy; 2.1.3. Temperature; 2.1.4. Energy Units; 2.1.5. Heat Capacity; 2.1.6. Kirchhoff's Relation; 2.1.7. Entropy; 2.1.8. Gibbs Free Energy; 2.2. EQUILIBRIUM ANALYSIS; 2.2.1. Two-State Transition; 2.2.2. Derivatives of the Equilibrium Constant; 2.3. AQUEOUS SOLUTIONS; 2.3.1. Specificity of Water as a Solvent; 2.3.2. Acid-Base Equilibrium; 2.3.3. Partial Quantities; 2.4. TRANSFER OF SOLUTES INTO THE AQUEOUS PHASE; 2.4.1. Hydration Effects
880-01/(S Machine generated contents note: 1. Introduction -- 2. Methodology -- 2.1. Thermodynamic Basics of Calorimetry -- 2.1.1. Energy -- 2.1.2. Enthalpy -- 2.1.3. Temperature -- 2.1.4. Energy Units -- 2.1.5. Heat Capacity -- 2.1.6. Kirchhoff's Relation -- 2.1.7. Entropy -- 2.1.8. Gibbs Free Energy -- 2.2. Equilibrium Analysis -- 2.2.1. Two-State Transition -- 2.2.2. Derivatives of the Equilibrium Constant -- 2.3. Aqueous Solutions -- 2.3.1. Specificity of Water as a Solvent -- 2.3.2. Acid-Base Equilibrium -- 2.3.3. Partial Quantities -- 2.4. Transfer of Solutes into the Aqueous Phase -- 2.4.1. Hydration Effects -- 2.4.2. Hydrophobic Force -- 2.4.3. Hydration of Polar and Nonpolar Groups -- References -- 3. Calorimetry -- 3.1. Isothermal Reaction Microcalorimetry -- 3.1.1. Heat of Mixing Reaction -- 3.1.2. Mixing of Reagents in Comparable Volumes -- 3.1.3. Isothermal Titration Microcalorimeter -- 3.1.4. ITC Experiments -- 3.1.5. Analysis of the ITC Data -- 3.2. Heat Capacity Calorimetry -- 3.2.1. Technical Problems -- 3.2.2. Differential Scanning Microcalorimeter -- 3.2.3. Determination of the Partial Heat Capacity of Solute Molecules -- 3.2.4. DSC Experiments -- 3.2.5. Determination of the Enthalpy of a Temperature-Induced Process -- 3.2.6. Determination of the van't Hoff Enthalpy -- 3.2.7. Multimolecular Two-State Transition -- 3.2.8. Analysis of the Complex Heat Capacity Profile -- 3.2.9. Correction for Components Refolding -- 3.3. Pressure Perturbation Calorimetry -- 3.3.1. Heat Effect of Changing Pressure -- 3.3.2. Pressure Perturbation Experiment -- References -- 4. Macromolecules -- 4.1. Evolution of the Concept -- 4.2. Proteins -- 4.2.1. Chemical Structure -- 4.2.2. Physical Structure -- 4.2.3. Restrictions on the Conformation of Polypeptide Chains -- 4.2.4. Regular Conformations of Polypeptide Chain Proteins -- 4.3. Hierarchy in Protein Structure -- 4.3.1. Tertiary Structure of Proteins -- 4.3.2. Quaternary Structure of Proteins -- 4.4. Nucleic Acids -- 4.4.1. Chemical Structure -- 4.4.2. Physical Structure -- References -- 5. α-Helix and α-Helical Coiled-Coil -- 5.1. α-Helix -- 5.1.1. Calorimetric Studies of α-Helix Unfolding-Refolding -- 5.1.2. Analysis of the Heat Capacity Function -- 5.2. α-Helical Coiled-Coils -- 5.2.1. Two-Stranded Coiled-Coils -- 5.2.2. Three-Stranded Coiled-Coils -- 5.3. α-Helical Coiled-Coil Proteins -- 5.3.1. Muscle Proteins -- 5.3.2. Myosin Rod -- 5.3.3. Paramyosin -- 5.3.4. Tropomyosin -- 5.3.5. Leucine Zipper -- 5.3.6. Discreteness of the Coiled-Coils -- References -- 6. Polyproline-II Coiled-Coils -- 6.1. Collagens -- 6.1.1. Collagen Superhelix -- 6.1.2. Hydrogen Bonds in Collagen -- 6.1.3. Stability of Collagens -- 6.1.4. Role of Pyrrolidine Rings in Collagen Stabilization -- 6.2. Calorimetric Studies of Collagens -- 6.2.1. Enthalpy and Entropy of Collagen Melting -- 6.2.2. Correlation between Thermodynamic and Structural Characteristics of Collagens -- 6.2.3. Role of Water in Maintaining the Collagen Structure -- 6.3. Thermodynamics of Collagens -- 6.3.1. Cooperativity of Collagen Unfolding -- 6.3.2. Factors Responsible for Maintaining the Collagen Coiled-Coil -- 6.3.3. Flexibility of the Collagen Structure -- 6.3.4. Biological Aspect of the Collagen Stability Problem -- References -- 7. Globular Proteins -- 7.1. Denaturation of Globular Proteins -- 7.1.1. Proteins at Extremal Conditions -- 7.1.2. Main Problems of Protein Denaturation -- 7.2. Heat Denaturation of Proteins -- 7.2.1. DSC Studies of Protein Denaturation upon Heating -- 7.2.2. Reversibility of Heat Denaturation -- 7.2.3. Cooperativity of Denaturation -- 7.2.4. Heat Capacity of the Native and Denatured States -- 7.2.5. Functions Specifying Protein Stability -- 7.3. Cold Denaturation -- 7.3.1. Proteins at Low Temperatures -- 7.3.2. Experimental Observation of Cold Denaturation -- 7.4. pH-Induced Protein Denaturation -- 7.4.1. Isothermal pH Titration of Globular Proteins -- 7.5. Denaturant-Induced Protein Unfolding -- 7.5.1. Use of Denaturants for Estimating Protein Stability -- 7.5.2. Calorimetric Studies of Protein Unfolding by Denaturants -- 7.5.3. Urea and GuHCI Interactions with Protein -- 7.6. Unfolded State of Protein -- 7.6.1. Completeness of Protein Unfolding at Denaturation -- 7.6.2. Thermodynamic Functions Describing Protein States -- References -- 8. Energetic Basis of Protein Structure -- 8.1. Hydration Effects -- 8.1.1. Proteins in an Aqueous Environment -- 8.1.2. Hydration of Protein Groups -- 8.1.3. Hydration of the Folded and Unfolded Protein -- 8.2. Protein in Vacuum -- 8.2.1. Heat Capacity of Globular Proteins -- 8.2.2. Enthalpy of Protein Unfolding in Vacuum -- 8.2.3. Entropy of Protein Unfolding in Vacuum -- 8.3. Back into the Water -- 8.3.1. Enthalpies of Protein Unfolding in Water -- 8.3.2. Hydrogen Bonds -- 8.3.3. Hydrophobic Effect -- 8.3.4. Balance of Forces Stabilizing and Destabilizing Protein Structure -- References -- 9. Protein Folding -- 9.1. Macrostabilities and Microstabilities of Protein Structure -- 9.1.1. Macrostability of Proteins -- 9.1.2. Microstability of Proteins -- 9.1.3. Packing in Protein Interior -- 9.2. Protein Folding Technology -- 9.2.1. Intermediate States in Protein Folding -- 9.2.2. Molten Globule Concept -- 9.3. Formation of Protein Structure -- 9.3.1. Transient State in Protein Folding -- 9.3.2. Mechanism of Cooperation -- 9.3.3. Thermodynamic States of Proteins -- References -- 10. Multidomain Proteins -- 10.1. Criterion of Cooperativity -- 10.1.1. Deviations from a Two-State Unfolding-Refolding -- 10.1.2. Papain -- 10.1.3. Pepsinogen -- 10.2. Proteins with Internal Homology -- 10.2.1. Evolution of Multidomain Proteins -- 10.2.2. Ovomucoid -- 10.2.3. Calcium-Binding Proteins -- 10.2.4. Plasminogen -- 10.2.5. Fibrinogen -- 10.2.6. Fibronectin -- 10.2.7. Discreteness in Protein Structure -- References -- 11. Macromolecular Complexes -- 11.1. Entropy of Association Reactions -- 11.1.1. Thermodynamics of Molecular Association -- 11.1.2. Experimental Verification of the Translational Entropy -- 11.2. Calorimetry of Association Entropy -- 11.2.1. SSI Dimer Dissociation -- 11.2.2. Dissociation of the Coiled-Coil -- 11.2.3. Entropy Cost of Association -- 11.3. Thermodynamics of Molecular Recognition -- 11.3.1. Calorimetry of Protein Complex Formation -- 11.3.2. Target Peptide Recognition by Calmodulin -- 11.3.3. Thermodynamic Analysis of Macromolecular Complexes -- References -- 12. Protein-DNA Interaction -- 12.1. Problems -- 12.1.1. Two Approaches -- 12.1.2. Protein Binding to the DNA Grooves -- 12.2. Binding to the Major Groove of DNA -- 12.2.1. Homeodomains -- 12.2.2. Binding of the GCN4 bZIP to DNA -- 12.2.3. Heterodimeric bZIP Interactions with the Asymmetric DNA Site -- 12.2.4. IRF Transcription Factors -- 12.2.5. Binding of NF-kB to the PRDII Site -- 12.3. Binding to the Minor Groove of DNA -- 12.3.1. AT-Hooks -- 12.3.2. HMG Boxes -- 12.4. Comparative Analysis of Protein-DNA Complexes -- 12.4.1. Sequence-Specific versus Non-Sequence-Specific HMGs -- 12.4.2. Salt-Dependent versus Salt-Independent Components of Binding -- 12.4.3. Minor versus Major Groove Binding -- 12.5. Concluding Remarks -- 12.5.1. Assembling Multicomponent Protein-DNA Complex -- 12.5.2. CC Approach versus PB Theory -- References -- 13. Nucleic Acids -- 13.1. DNA -- 13.1.1. Problems -- 13.1.2. Factors Affecting DNA Melting -- 13.2. Polynucleotides -- 13.2.1. Melting of Polynucleotides -- 13.2.2. Calorimetry of Poly(A)-Poly(U) -- 13.3. Short DNA Duplexes -- 13.3.1. Calorimetry of Short DNA Duplexes -- 13.3.2. Specificity of the AT-rich DNA Duplexes -- 13.3.3. DNA Hydration Studied by Pressure Perturbation Calorimetry -- 13.3.4. Cost of DNA Bending -- 13.4. RNA -- 13.4.1. Calorimetry of RNA -- 13.4.2. Calorimetric Studies of Transfer RNAs -- References
Summary "This is the first textbook on the microcalorimetry of biological molecules. The coverage starts from the basics of thermodynamics (which are unknown for many scientists working in biology), describes evolution of the calorimetric technique, explains how to analyze the calorimetric data, and illustrates these methods with a wide selection of examples. The book provides an essential resource to scientists studying biological molecular structures and the reactions between these structures"--Provided by publisher
"This book is intended to assist the protein chemist in maximizing the thermodynamics-related data that can be derived from microcalorimeters, which are in widespread availability by instrument manufacturers. This book starts at the basics of thermodynamics (which are unknown for many scientists working in biology), describes the evolution of the calorimetric technique, explains how to analyze the calorimetric data and provides a number of illustrations"--Provided by publisher
Bibliography Includes bibliographical references and index
Notes English
Online resource; title from digital title page (viewed August 23, 2012)
Subject Macromolecules.
Macromolecules -- Analysis
Calorimeters.
Calorimetry.
Calorimetry
Macromolecular Substances -- analysis
calorimeters.
calorimetry.
SCIENCE -- Life Sciences -- Biochemistry.
SCIENCE -- Chemistry -- Organic.
Calorimetry
Calorimeters
Macromolecules
Macromolecules -- Analysis
Mikrokalorimetrie
Makromolekül
Biopolymere
Form Electronic book
LC no. 2012020107
ISBN 9781118337479
1118337476
9781118337509
1118337506
9781118337493
1118337492
9786613662453
6613662453