Limit search to available items
Book Cover
E-book

Title Aerospace navigation systems / [edited by] Alexander V. Nebylov, Joseph Watson
Edition First edition
Published Chicheter, West Sussex, United Kingdom : John Wiley & Sons, 2016
©2016

Copies

Description 1 online resource
Contents Title Page -- Copyright Page -- Contents -- The Editors -- Acknowledgments -- Preface -- Chapter 1 Inertial Navigation Systems -- 1.1 Introduction -- 1.2 The Accelerometer Sensing Equation -- 1.3 Reference Frames -- 1.3.1 True Inertial Frame -- 1.3.2 Earth-Centered Inertial Frame or i-Frame -- 1.3.3 Earth-Centered Earth-Fixed Frame or e-Frame -- 1.3.4 Navigation Frame -- 1.3.5 Body Frame -- 1.3.6 Sensor Frames (a-Frame, g-Frame) -- 1.4 Direction Cosine Matrices and Quaternions -- 1.5 Attitude Update -- 1.5.1 Body Frame Update -- 1.5.2 Navigation Frame Update -- 1.5.3 Euler Angle Extraction -- 1.6 Navigation Mechanization -- 1.7 Position Update -- 1.8 INS Initialization -- 1.9 INS Error Characterization -- 1.9.1 Mounting Errors -- 1.9.2 Initialization Errors -- 1.9.3 Sensor Errors -- 1.9.4 Gravity Model Errors -- 1.9.5 Computational Errors -- 1.9.6 Simulation Examples -- 1.10 Calibration and Compensation -- 1.11 Production Example -- References -- Chapter 2 Satellite Navigation Systems -- 2.1 Introduction -- 2.2 Preliminary Considerations -- 2.3 Navigation Problems Using Satellite Systems -- 2.3.1 The Geometrical Problem -- 2.3.2 Reference Coordinate Systems -- 2.3.3 The Classical Mathematical Model -- 2.4 Satellite Navigation Systems (GNSS) -- 2.4.1 The Global Positioning System -- 2.4.2 GLONASS -- 2.4.3 Galileo -- 2.4.4 BeiDou (Compass) -- 2.4.5 State and Development of the Japanese QZSS -- 2.4.6 State and Development of the IRNSS -- 2.5 GNSS Observables -- 2.5.1 Carrier-Phase Observables -- 2.5.2 Doppler Frequency Observables -- 2.5.3 Single-Difference Observables -- 2.5.4 Double-Difference Observables -- 2.5.5 Triple-Difference Observables -- 2.5.6 Linear Combinations -- 2.5.7 Integer Ambiguity Resolution -- 2.6 Sources of Error -- 2.6.1 Ionosphere Effects -- 2.6.2 Troposphere Effects -- 2.6.3 Selective Availability (SA) Effects
2.6.4 Multipath Effects -- 2.6.5 Receiver Noise -- 2.7 GNSS Receivers -- 2.7.1 Receiver Architecture -- 2.7.2 Carrier Smoothing -- 2.7.3 Attitude Estimation -- 2.7.4 Typical Receivers on the Market -- 2.8 Augmentation Systems -- 2.8.1 Differential Techniques -- 2.8.2 The Precise Point Positioning (PPP) Technique -- 2.8.3 Satellite-Based Augmentation Systems -- 2.9 Integration of GNSS with Other Sensors -- 2.9.1 GNSS/INS -- 2.10 Aerospace Applications -- 2.10.1 The Problem of Integrity -- 2.10.2 Air Navigation: En Route, Approach, and Landing -- 2.10.3 Surveillance and Air Traffic Control (ATC) -- 2.10.4 Space Vehicle Navigation -- References -- Chapter 3 Radio Systems for Long-Range Navigation -- 3.1 Introduction -- 3.2 Principles of Operation -- 3.3 Coverage -- 3.4 Interference in VLF and LF Radio-Navigation Systems -- 3.5 Error Budget -- 3.5.1 Loran-C and CHAYKA Error Budget -- 3.5.2 ALPHA and OMEGA Error Budget -- 3.5.3 Position Error -- 3.6 LF Radio System Modernization -- 3.6.1 EUROFIX-Regional GNSS Differential Subsystem -- 3.6.2 Enhanced Loran -- 3.6.3 Enhanced Differential Loran -- 3.7 User Equipment -- References -- Chapter 4 Radio Systems for Short-Range Navigation -- 4.1 Overview of Short-Range Navigational Aids -- 4.2 Nondirectional Radio Beacon and the "Automatic Direction Finder" -- 4.2.1 Operation and Controls -- 4.3 VHF Omni-Directional Radio Range -- 4.3.1 Basic VOR Principles -- 4.3.2 The Doppler VOR -- 4.4 DME and TACAN Systems -- 4.4.1 DME Equipment -- 4.4.2 Tactical Air Navigation -- 4.4.3 The VORTAC Station -- 4.4.4 The Radiotechnical Short-Range Navigation System -- 4.4.5 Principles of Operation and Construction of the RSBN System -- References -- Chapter 5 Radio Technical Landing Systems -- 5.1 Instrument Landing Systems -- 5.1.1 The Marker Beacons -- 5.1.2 Approach Guidance-Ground Installations
5.1.3 Approach Guidance-Aircraft Equipment -- 5.1.4 CAT II and III Landing -- 5.2 Microwave Landing Systems-Current Status -- 5.2.1 MLS Basic Concepts -- 5.2.2 MLS Functionality -- 5.3 Ground-Based Augmentation System -- 5.3.1 Current Status -- 5.3.2 Technical Features -- 5.4 Lighting Systems-Airport Visual Landing Aids and Other Short-Range Optical Navigation Systems -- 5.4.1 The Visual Approach Slope Indicator -- 5.4.2 Precision Approach Path Indicator -- 5.4.3 The Final Approach Runway Occupancy Signal -- References -- Chapter 6 Correlated-Extremal Systems and Sensors -- 6.1 Construction Principles -- 6.1.1 General Information -- 6.1.2 Mathematical Foundation -- 6.1.3 Basic CES Elements and Units -- 6.1.4 Analog and Digital Implementation Methods -- 6.2 Image Sensors for CES -- 6.3 Aviation and Space CES -- 6.3.1 Astro-Orientation CES -- 6.3.2 Navigational CES -- 6.3.3 Aviation Guidance via Television Imaging -- 6.4 Prospects for CES Development -- 6.4.1 Combined CES -- 6.4.2 Micro-Miniaturization of CES and the Constituent Components -- 6.4.3 Prospects for CES Improvement -- 6.4.4 New Properties and Perspectives in CES -- References -- Chapter 7 Homing Devices -- 7.1 Introduction -- 7.2 Definition of Homing Devices -- 7.2.1 Homing Systems for Autonomous and Group Operations -- 7.2.2 Guidance and Homing Systems -- 7.2.3 Principles and Classification of Homing Devices -- 7.3 Homing Device Functioning in Signal Fields -- 7.3.1 Characteristics of Homing Device Signal Fields -- 7.3.2 Optoelectronic Sensors for Homing Devices -- 7.3.3 Radar Homing Devices -- 7.4 Characteristics of Homing Methods -- 7.4.1 Aerospace Vehicle Homing Methods -- 7.4.2 Homing Device Dynamic Errors -- 7.5 Homing Device Efficiency -- 7.5.1 Homing Device Accuracy -- 7.5.2 Homing Device Dead Zones -- 7.6 Radio Proximity Fuze
7.7 Homing Device Functioning Under Jamming Conditions -- 7.8 Intelligent Homing Devices -- References -- Chapter 8 Optimal and Suboptimal Filtering in Integrated Navigation Systems -- 8.1 Introduction -- 8.2 Filtering Problems: Main Approaches and Algorithms -- 8.2.1 The Least Squares Method -- 8.2.2 The Wiener Approach -- 8.2.3 The Kalman Approach -- 8.2.4 Comparison of Kalman and Wiener Approaches -- 8.2.5 Beyond the Kalman Filter -- 8.3 Filtering Problems for Integrated Navigation Systems -- 8.3.1 Filtering Problems Encountered in the Processing of Data from Systems Directly Measuring the Parameters to be Estimated -- 8.3.2 Filtering Problems in Aiding a Navigation System (Linearized Case) -- 8.3.3 Filtering Problems in Aiding a Navigation System (Nonlinear Case) -- 8.4 Filtering Algorithms for Processing Data from Inertial and Satellite Systems -- 8.4.1 Inertial System Error Models -- 8.4.2 The Filtering Problem in Loosely Coupled INS/SNS -- 8.4.3 The Filtering Problem in Tightly Coupled INS/SNS -- 8.4.4 Example of Filtering Algorithms for an Integrated INS/SNS -- 8.5 Filtering and Smoothing Problems Based on the Combined Use of Kalman and Wiener Approaches for Aviation Gravimetry -- 8.5.1 Statement of the Optimal Filtering and Smoothing Problems in the Processing of Gravimeter and Satellite Measurements -- 8.5.2 Problem Statement and Solution within the Kalman Approach -- 8.5.3 Solution Using the Method of PSD Local Approximations -- Acknowledgment -- References -- Chapter 9 Navigational Displays -- 9.1 Introduction to Modern Aerospace Navigational Displays -- 9.1.1 The Human Interface for Display Control-Buttonology -- 9.1.2 Rapidly Configurable Displays for Glass Cockpit Customization Purposes -- 9.2 A Global Positioning System Receiver and Map Display -- 9.2.1 Databases -- 9.2.2 Fully Integrated Flight Control
9.2.3 Advanced AHRS Architecture -- 9.2.4 Weather and Digital Audio Functions -- 9.2.5 Traffic Information Service -- 9.3 Automatic Dependent Surveillance-Broadcast (ADS-B) System Displays -- 9.4 Collision Avoidance and Ground Warning Displays -- 9.4.1 Terrain Awareness Warning System (TAWS): Classes A and B -- Appendix: Terminology and Review of Some US Federal Aviation Regulations -- References -- Chapter 10 Unmanned Aerospace Vehicle Navigation -- 10.1 The Unmanned Aerospace Vehicle -- 10.2 Small-Sized UAVs -- 10.3 The UAV as a Controlled Object -- 10.4 UAV Navigation -- 10.4.1 Methods of Controlling Flight Along Intended Tracks -- 10.4.2 Basic Equations for UAV Inertial Navigation -- 10.4.3 Algorithms for Four-Dimensional (Terminal) Navigation -- 10.5 Examples of Construction and Technical Characteristics of the Onboard Avionic Control Equipment -- 10.6 Small-Sized Unmanned WIG and Amphibious UAVs -- 10.6.1 Emerging Trends in the Development of Unmanned WIG UAVs and USVs, and Amphibious UAVs -- 10.6.2 Radio Altimeter and Inertial Sensor Integration -- 10.6.3 Development of Control Systems for Unmanned WIG Aircraft and Amphibious UAVs -- 10.6.4 The Design of High-precision Instruments and Sensor Integration for the Measurement of Low Altitudes -- References -- Index -- Supplemental Images -- EULA
Bibliography Includes bibliographical references and index
Notes English
Print version record and CIP data provided by publisher
Subject Navigation (Aeronautics)
Aids to air navigation.
Navigation (Astronautics)
TECHNOLOGY & ENGINEERING -- Engineering (General)
Aids to air navigation
Navigation (Aeronautics)
Navigation (Astronautics)
Form Electronic book
Author Nebylov, A. V. (Aleksandr Vladimirovich), editor.
Watson, Joseph, 1931- editor.
LC no. 2015049979
ISBN 9781119163039
111916303X
9781119163046
1119163048