Limit search to available items
Book Cover
Book
Author Sutton, Richard S., author

Title Reinforcement learning : an introduction / Richard S. Sutton and Andrew G. Barto
Edition Second edition
Published Cambridge, Massachusetts ; London, England : The MIT Press, [2018]
©2018

Copies

Location Call no. Vol. Availability
 W'PONDS UNIT READING  006.31 Sut/Rla 2018  DUE 03-05-24
 W'PONDS UNIT READING  006.31 Sut/Rla 2018  AVAILABLE
Description xxii, 526 pages : illustrations (some color) ; 24 cm
Series Adaptive computation and machine learning
Contents Machine generated contents note: 1. Introduction -- 1.1. Reinforcement Learning -- 1.2. Examples -- 1.3. Elements of Reinforcement Learning -- 1.4. Limitations and Scope -- 1.5. An Extended Example: Tic-Tac-Toe -- 1.6. Summary -- 1.7. Early History of Reinforcement Learning -- 2. Multi-armed Bandits -- 2.1.A k-armed Bandit Problem -- 2.2. Action-value Methods -- 2.3. The 10-armed Testbed -- 2.4. Incremental Implementation -- 2.5. Tracking a Nonstationary Problem -- 2.6. Optimistic Initial Values -- 2.7. Upper-Confidence-Bound Action Selection -- 2.8. Gradient Bandit Algorithms -- 2.9. Associative Search (Contextual Bandits) -- 2.10. Summary -- 3. Finite Markov Decision Processes -- 3.1. The Agent-Environment Interface -- 3.2. Goals and Rewards -- 3.3. Returns and Episodes -- 3.4. Unified Notation for Episodic and Continuing Tasks -- 3.5. Policies and Value Functions -- 3.6. Optimal Policies and Optimal Value Functions -- 3.7. Optimality and Approximation -- 3.8. Summary -- 4. Dynamic Programming
Note continued: 4.1. Policy Evaluation (Prediction) -- 4.2. Policy Improvement -- 4.3. Policy Iteration -- 4.4. Value Iteration -- 4.5. Asynchronous Dynamic Programming -- 4.6. Generalized Policy Iteration -- 4.7. Efficiency of Dynamic Programming -- 4.8. Summary -- 5. Monte Carlo Methods -- 5.1. Monte Carlo Prediction -- 5.2. Monte Carlo Estimation of Action Values -- 5.3. Monte Carlo Control -- 5.4. Monte Carlo Control without Exploring Starts -- 5.5. Off-policy Prediction via Importance Sampling -- 5.6. Incremental Implementation -- 5.7. Off-policy Monte Carlo Control -- 5.8.*Discounting-aware Importance Sampling -- 5.9.*Per-decision Importance Sampling -- 5.10. Summary -- 6. Temporal-Difference Learning -- 6.1. TD Prediction -- 6.2. Advantages of TD Prediction Methods -- 6.3. Optimality of TD(0) -- 6.4. Sarsa: On-policy TD Control -- 6.5.Q-learning: Off-policy TD Control -- 6.6. Expected Sarsa -- 6.7. Maximization Bias and Double Learning
Note continued: 6.8. Games, Afterstates, and Other Special Cases -- 6.9. Summary -- 7.n-step Bootstrapping -- 7.1.n-step TD Prediction -- 7.2.n-step Sarsa -- 7.3.n-step Off-policy Learning -- 7.4.*Per-decision Methods with Control Variates -- 7.5. Off-policy Learning Without Importance Sampling: The n-step Tree Backup Algorithm -- 7.6.*A Unifying Algorithm: n-step Q(u) -- 7.7. Summary -- 8. Planning and Learning with Tabular Methods -- 8.1. Models and Planning -- 8.2. Dyna: Integrated Planning, Acting, and Learning -- 8.3. When the Model Is Wrong -- 8.4. Prioritized Sweeping -- 8.5. Expected vs. Sample Updates -- 8.6. Trajectory Sampling -- 8.7. Real-time Dynamic Programming -- 8.8. Planning at Decision Time -- 8.9. Heuristic Search -- 8.10. Rollout Algorithms -- 8.11. Monte Carlo Tree Search -- 8.12. Summary of the Chapter -- 8.13. Summary of Part I: Dimensions -- 9. On-policy Prediction with Approximation -- 9.1. Value-function Approximation -- 9.2. The Prediction Objective (VE)
Note continued: 9.3. Stochastic-gradient and Semi-gradient Methods -- 9.4. Linear Methods -- 9.5. Feature Construction for Linear Methods -- 9.5.1. Polynomials -- 9.5.2. Fourier Basis -- 9.5.3. Coarse Coding -- 9.5.4. Tile Coding -- 9.5.5. Radial Basis Functions -- 9.6. Selecting Step-Size Parameters Manually -- 9.7. Nonlinear Function Approximation: Artificial Neural Networks -- 9.8. Least-Squares TD -- 9.9. Memory-based Function Approximation -- 9.10. Kernel-based Function Approximation -- 9.11. Looking Deeper at On-policy Learning: Interest and Emphasis -- 9.12. Summary -- 10. On-policy Control with Approximation -- 10.1. Episodic Semi-gradient Control -- 10.2. Semi-gradient n-step Sarsa -- 10.3. Average Reward: A New Problem Setting for Continuing Tasks -- 10.4. Deprecating the Discounted Setting -- 10.5. Differential Semi-gradient n-step Sarsa -- 10.6. Summary -- 11.*Off-policy Methods with Approximation -- 11.1. Semi-gradient Methods -- 11.2. Examples of Off-policy Divergence
Note continued: 11.3. The Deadly Triad -- 11.4. Linear Value-function Geometry -- 11.5. Gradient Descent in the Bellman Error -- 11.6. The Bellman Error is Not Learnable -- 11.7. Gradient-TD Methods -- 11.8. Emphatic-TD Methods -- 11.9. Reducing Variance -- 11.10. Summary -- 12. Eligibility Traces -- 12.1. The A-return -- 12.2. TD(A) -- 12.3.n-step Truncated A-return Methods -- 12.4. Redoing Updates: Online A-return Algorithm -- 12.5. True Online TD(A) -- 12.6.*Dutch Traces in Monte Carlo Learning -- 12.7. Sarsa(A) -- 12.8. Variable A and ry -- 12.9. Off-policy Traces with Control Variates -- 12.10. Watkins's Q(A) to Tree-Backup(A) -- 12.11. Stable Off-policy Methods with Traces -- 12.12. Implementation Issues -- 12.13. Conclusions -- 13. Policy Gradient Methods -- 13.1. Policy Approximation and its Advantages -- 13.2. The Policy Gradient Theorem -- 13.3. REINFORCE: Monte Carlo Policy Gradient -- 13.4. REINFORCE with Baseline -- 13.5. Actor-Critic Methods
Note continued: 13.6. Policy Gradient for Continuing Problems -- 13.7. Policy Parameterization for Continuous Actions -- 13.8. Summary -- 14. Psychology -- 14.1. Prediction and Control -- 14.2. Classical Conditioning -- 14.2.1. Blocking and Higher-order Conditioning -- 14.2.2. The Rescorla-Wagner Model -- 14.2.3. The TD Model -- 14.2.4. TD Model Simulations -- 14.3. Instrumental Conditioning -- 14.4. Delayed Reinforcement -- 14.5. Cognitive Maps -- 14.6. Habitual and Goal-directed Behavior -- 14.7. Summary -- 15. Neuroscience -- 15.1. Neuroscience Basics -- 15.2. Reward Signals, Reinforcement Signals, Values, and Prediction Errors -- 15.3. The Reward Prediction Error Hypothesis -- 15.4. Dopamine -- 15.5. Experimental Support for the Reward Prediction Error Hypothesis -- 15.6. TD Error/Dopamine Correspondence -- 15.7. Neural Actor-Critic -- 15.8. Actor and Critic Learning Rules -- 15.9. Hedonistic Neurons -- 15.10. Collective Reinforcement Learning -- 15.11. Model-based Methods in the Brain
Note continued: 15.12. Addiction -- 15.13. Summary -- 16. Applications and Case Studies -- 16.1. TD-Gammon -- 16.2. Samuel's Checkers Player -- 16.3. Watson's Daily-Double Wagering -- 16.4. Optimizing Memory Control -- 16.5. Human-level Video Game Play -- 16.6. Mastering the Game of Go -- 16.6.1. AlphaGo -- 16.6.2. AlphaGo Zero -- 16.7. Personalized Web Services -- 16.8. Thermal Soaring -- 17. Frontiers -- 17.1. General Value Functions and Auxiliary Tasks -- 17.2. Temporal Abstraction via Options -- 17.3. Observations and State -- 17.4. Designing Reward Signals -- 17.5. Remaining Issues -- 17.6. Experimental Support for the Reward Prediction Error Hypothesis
Summary "Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."-- Provided by publisher
Bibliography Includes bibliographical references and index
Subject Reinforcement learning
Reinforcement, Psychology
Machine Learning
Reading List SIT796 recommended text 2024
Author Barto, Andrew G., author
LC no. 2018023826
ISBN 9780262039246
0262039249