Limit search to available items
Book Cover

Title Nanobiomaterials in antimicrobial therapy : applications of nanobiomaterials / edited by Alexandru Mihai Grumezescu
Published Kidlington, Oxford, UK : William Andrew is an imprint of Elsevier, 2016
Online access available from:
ScienceDirect eBooks    View Resource Record  


Description 1 online resource
Series Applications of nanobiomaterials ; volume 6
Applications of nanobiomaterials ; volume 6
Contents Front Cover; Nanobiomaterials in Antimicrobial Therapy; Copyright Page; Contents; List of contributors; Preface of the series; Preface; About the Series (Volumes I-XI); About Volume VI; 1 Antimicrobial photoinactivation with functionalized fullerenes; 1.1 Introduction; 1.2 Photosensitizers; 1.3 Photochemistry of PDT; 1.4 Fullerenes Acting as Photosensitizers; 1.5 Biocompatibility of Fullerenes; 1.6 Chemical Design of Fullerene Derivatives; 1.6.1 Examples of the Synthesis of Mono- and Polycationic Fullerene Derivatives; 1.6.2 Synthesis of Hexa-Anionic Fullerene Derivatives
1.6.3 Synthesis of Chromophore-Linked Fullerene Derivatives1.7 Photochemical and Photophysical Properties of Fullerenyl Molecular Micelles and Chromophore-Fullerene Conjugates; 1.8 Fullerenes for Antimicrobial Inactivation; 1.9 Conclusions; Acknowledgments; References; 2 Toxicity of inorganic nanoparticles against prokaryotic cells; 2.1 Introduction; 2.2 Inorganic Nanoarchitectonics with Anti-Infective Potential; 2.2.1 Unmodified Nanomaterials with Natural Antimicrobial Activity; Silver nanoparticles; Cytotoxicity; Clinical studies; Selenium nanoparticles Toxicity2.2.1.3 Copper nanoparticles; Cytotoxicity; Titanium dioxide nanoparticles; Cytotoxicity; ZnO nanoparticles; 2.2.2 Modified Nanomaterials with Antimicrobial Activity; Phytochemical-Modified Nanomaterials; Peptide- modified nanomaterials; Nanomaterials Modified with Commercial Antibiotics; 2.3 Conclusions and Perspectives; References; 3 Antimicrobial magnetosomes for topical antimicrobial therapy; 3.1 Introduction; 3.1.1 Biosynthesis of Magnetic Particles; Biologically induced mineralization Biologically controlled biomineralization3. Magnetite in eukaryotic microbes; Magnetotactic bacteria; Characteristics and attributes of magnetosomes; Attributes of magnetosomes; Steps involved in magnetosome formation; Functionalization of magnetosomes; Biochemical characteristics of magnetosome membrane; Extraction and purification of magnetosomes for antimicrobial activity; Surface modification of magnetosomes; Applications of magnetosomes; 3.1.2 Green Synthesis of Magnetic Nanoparticles Extracellular synthesis of iron oxide particles3.2 Biofilm Formation; 3.2.1 Characteristics of Biofilm in Medical Devices; 3.2.2 Bacterial Biofilm in Diseases; 3.2.3 Structure of Bacterial Biofilm; Genomics and proteomics of biofilm formation in Gram-negative bacteria; Structure of Gram-negative cell wall; 3.2.4 Candida albicans and Biofilm; Mechanism of drug resistance; 3.2.5 Failure of Antibiotics to Penetrate Biofilm; 3.3 Nanobiomaterials Against Biofilm Formation; 3.3.1 Mechanism of Toxicity of Nanoparticles; Intracellular toxicity
Summary Nanobiomaterials in Antimicrobial Therapy presents novel antimicrobial approaches that enable nanotechnology to be used effectively in the treatment of infections. This field has gained a large amount of interest over the last decade, in response to the high resistance of pathogens to antibiotics. Leading researchers from around the world discuss the synthesis routes of nanobiomaterials, characterization, and their applications as antimicrobial agents. The books covers various aspects: mechanisms of toxicity for inorganic nanoparticles against bacteria; the development of excellent carriers for the transport of a high variety of antimicrobials; the use of nanomaterials to facilitate both diagnosis and therapeutic approaches against infectious agents; strategies to control biofilms based on enzymes, biosurfactants, or magnetotactic bacteria; bacterial adhesion onto polymeric surfaces and novel materials; and antimicrobial photodynamic inactivation. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Anti-infective agents.
Biomedical materials.
Nanostructured materials.
Form Electronic book
Author Grumezescu, Alexandru Mihai.
ISBN 0323428878 (electronic bk.)
9780323428873 (electronic bk.)