Limit search to available items
Book Cover
E-book
Author Smallman, R. E.

Title Physical metallurgy and advanced materials
Edition 7th ed. / R.E. Smallman, A.H.W. Ngan
Published Amsterdam ; Boston : Butterworth Heinemann, 2007

Copies

Description 1 online resource (xxi, 650 pages) : illustrations
Contents 1. Atoms and atomic arrangements -- 2. Phase equilibria and structure -- 3. Crystal defects -- 4. Characterization and analysis -- 5. Physical properties -- 6. Mechanical properties I -- 7. Mechanical properties II -- Strengthening and toughening -- 8. Advanced alloys -- 9. Oxidation, corrosion and surface treatment -- 10. Non-metallics I -- Ceramics, glass, glass-ceramics -- 11. Non-metallics II -- Polymers, plastics, composites -- 12. Case examination of biomaterials, sports materials and nanomaterials
1. Atoms and atomic arrangements -- 1.1. The realm of materials science -- 1.2. The free atom -- 1.2.1. The four electron quantum numbers -- 1.2.2. Nomenclature for the electronic states -- 1.3. The Periodic Table -- 1.4. Interatomic bonding in materials -- 1.5. Bonding and energy levels -- 1.6. Crystal lattices and structures -- 1.7. Crystal directions and planes -- 1.8. Stereographic projection -- 1.9. Selected crystal structures -- 1.9.1. Pure metals -- 1.9.2. Diamond and graphite -- 1.9.3. Coordination in ionic crystals -- 1.9.4. AB-type compounds -- 2. Phase equilibria and structure -- 2.1. Crystallization from the melt -- 2.1.1. Freezing of a pure metal -- 2.1.2. Plane-front and dendritic solidification at a cooled surface -- 2.1.3. Forms of cast structure -- 2.1.4. Gas porosity and segregation -- 2.1.5. Directional solidification -- 2.1.6. Production of metallic single crystals for research -- 2.2. Principles and applications of phase diagrams -- 2.2.1. The concept of a phase -- 2.2.2. The Phase Rule -- 2.2.3. Stability of phases -- 2.2.4. Two-phase equilibria -- 2.2.5. Three-phase equilibria and reactions -- 2.2.6. Intermediate phases -- 2.2.7. Limitations of phase diagrams -- 2.2.8. Some key phase diagrams -- 2.2.9. Ternary phase diagrams -- 2.3. Principles of alloy theory -- 2.3.1. Primary substitutional solid solutions -- 2.3.2. Interstitial solid solutions -- 2.3.3. Types of intermediate phases -- 2.3.4. Order-disorder phenomena -- 2.4. The mechanism of phase changes -- 2.4.1. Kinetic considerations -- 2.4.2. Homogeneous nucleation -- 2.4.3. Heterogeneous nucleation -- 2.4.4. Nucleation in solids -- 3. Crystal defects -- 3.1. Types of imperfection -- 3.2. Point defects -- 3.2.1. Point defects in metals -- 3.2.2. Point defects in non-metallic crystals -- 3.2.3. Irradiation of solids -- 3.2.4. Point defect concentration and annealing -- 3.3. Line defects -- 3.3.1. Concept of a dislocation -- 3.3.2. Edge and screw dislocations -- 3.3.3. The Burgers vector -- 3.3.4. Mechanisms of slip and climb -- 3.3.5. Strain energy associated with dislocations -- 3.3.6. Dislocations in ionic structures -- 3.4. Planar defects -- 3.4.1. Grain boundaries -- 3.4.2. Twin boundaries -- 3.4.3. Extended dislocations and stacking faults in close-packed crystals -- 3.5. Volume defects -- 3.5.1. Void formation and annealing -- 3.5.2. Irradiation and voiding -- 3.5.3. Voiding and fracture -- 3.6. Defect behavior in common crystal structures -- 3.6.1. Dislocation vector diagrams and the Thompson tetrahedron -- 3.6.2. Dislocations and stacking faults in fcc structures -- 3.6.3. Dislocations and stacking faults in cph structures -- 3.6.4. Dislocations and stacking faults in bcc structures -- 3.6.5. Dislocations and stacking faults in ordered structures -- 3.7. Stability of defects -- 3.7.1. Dislocation loops -- 3.7.2. Voids -- 3.7.3. Nuclear irradiation effects
4. Characterization and analysis -- 4.1. Tools of characterization -- 4.2. Light microscopy -- 4.2.1. Basic principles -- 4.2.2. Selected microscopical techniques -- 4.3. X-ray diffraction analysis -- 4.3.1. Production and absorption of X-rays -- 4.3.2. Diffraction of X-rays by crystals -- 4.3.3. X-ray diffraction methods -- 4.3.4. Typical interpretative procedures for diffraction patterns -- 4.4. Analytical electron microscopy -- 4.4.1. Interaction of an electron beam with a solid -- 4.4.2. The transmission electron microscope (TEM) -- 4.4.3. The scanning electron microscope -- 4.4.4. Theoretical aspects of TEM -- 4.4.5. Chemical microanalysis -- 4.4.6. Electron energy-loss spectroscopy (EELS) -- 4.4.7. Auger electron spectroscopy (AES) -- 4.5. Observation of defects -- 4.5.1. Etch pitting -- 4.5.2. Dislocation decoration -- 4.5.3. Dislocation strain contrast in TEM -- 4.5.4. Contrast from crystals -- 4.5.5. Imaging of dislocations -- 4.5.6. Imaging of stacking faults -- 4.5.7. Application of dynamical theory -- 4.5.8. Weak-beam microscopy -- 4.6. Scanning probe microscopy -- 4.6.1. Scanning tunneling microscopy (STM) -- 4.6.2. Atomic force microscopy (AFM) -- 4.6.3. Applications of SPM -- 4.6.4. Nanoindentation -- 4.7. Specialized bombardment techniques -- 4.7.1. Neutron diffraction -- 4.7.2. Synchrotron radiation studies -- 4.7.3. Secondary ion mass spectrometry (SIMS) -- 4.8. Thermal analysis -- 4.8.1. General capabilities of thermal analysis -- 4.8.2. Thermogravimetric analysis -- 4.8.3. Differential thermal analysis -- 4.8.4. Differential scanning calorimetry -- 5. Physical properties -- 5.1. Introduction -- 5.2. Density -- 5.3. Thermal properties -- 5.3.1. Thermal expansion -- 5.3.2. Specific heat capacity -- 5.3.3. The specific heat curve and transformations -- 5.3.4. Free energy of transformation -- 5.4. Diffusion -- 5.4.1. Diffusion laws -- 5.4.2. Mechanisms of diffusion -- 5.4.3. Factors affecting diffusion -- 5.5. Anelasticity and internal friction -- 5.6. Ordering in alloys -- 5.6.1. Long-range and short-range order -- 5.6.2. Detection of ordering -- 5.6.3. Influence of ordering on properties -- 5.7. Electrical properties -- 5.7.1. Electrical conductivity -- 5.7.2. Semiconductors -- 5.7.3. Hall effect -- 5.7.4. Superconductivity -- 5.7.5. Oxide superconductors -- 5.8. Magnetic properties -- 5.8.1. Magnetic susceptibility -- 5.8.2. Diamagnetism and paramagnetism -- 5.8.3. Ferromagnetism -- 5.8.4. Magnetic alloys -- 5.8.5. Anti-ferromagnetism and ferrimagnetism -- 5.9. Dielectric materials -- 5.9.1. Polarization -- 5.9.2. Capacitors and insulators -- 5.9.3. Piezoelectric materials -- 5.9.4. Pyroelectric and ferroelectric materials -- 5.10. Optical properties -- 5.10.1. Reflection, absorption and transmission effects -- 5.10.2. Optical fibers -- 5.10.3. Lasers -- 5.10.4. Ceramic 'windows' -- 5.10.5. Electro-optic ceramics -- 6. Mechanical properties I -- 6.1. Mechanical testing procedures -- 6.1.1. Introduction -- 6.1.2. The tensile test -- 6.1.3. Indentation hardness testing -- 6.1.4. Impact testing -- 6.1.5. Creep testing -- 6.1.6. Fatigue testing -- 6.2. Elastic deformation -- 6.3. Plastic deformation -- 6.3.1. Slip and twinning -- 6.3.2. Resolved shear stress -- 6.3.3. Relation of slip to crystal structure -- 6.3.4. Law of critical resolved shear stress -- 6.3.5. Multiple slip -- 6.3.6. Relation between work hardening and slip -- 6.4. Dislocation behavior during plastic deformation -- 6.4.1. Dislocation mobility -- 6.4.2. Variation of yield stress with temperature and strain rate -- 6.4.3. Dislocation source operation -- 6.4.4. Discontinuous yielding -- 6.4.5. Yield points and crystal structure -- 6.4.6. Discontinuous yielding in ordered alloys -- 6.4.7. Solute-dislocation interaction -- 6.4.8. Dislocation locking and temperature -- 6.4.9. Inhomogeneity interaction -- 6.4.10. Kinetics of strain ageing -- 6.4.11. Influence of grain boundaries on plasticity -- 6.4.12. Superplasticity -- 6.5. Mechanical twinning -- 6.5.1. Crystallography of twinning -- 6.5.2. Nucleation and growth of twins -- 6.5.3. Effect of impurities on twinning -- 6.5.4. Effect of prestrain on twinning -- 6.5.5. Dislocation mechanism of twinning -- 6.5.6. Twinning and fracture -- 6.6. Strengthening and hardening mechanisms -- 6.6.1. Point defect hardening -- 6.6.2. Work hardening -- 6.6.3. Development of preferred orientation -- 6.7. Macroscopic plasticity -- 6.7.1. Tresca and von Mises criteria -- 6.7.2. Effective stress and strain -- 6.8. Annealing -- 6.8.1. General effects of annealing -- 6.8.2. Recovery -- 6.8.3. Recrystallization -- 6.8.4. Grain growth -- 6.8.5. Annealing twins -- 6.8.6. Recrystallization textures -- 6.9. Metallic creep -- 6.9.1. Transient and steady-state creep -- 6.9.2. Grain boundary contribution to creep -- 6.9.3. Tertiary creep and fracture -- 6.9.4. Creep-resistant alloy design -- 6.10. Deformation mechanism maps -- 6.11. Metallic fatigue -- 6.11.1. Nature of fatigue failure -- 6.11.2. Engineering aspects of fatigue -- 6.11.3. Structural changes accompanying fatigue -- 6.11.4. Crack formation and fatigue failure -- 6.11.5. Fatigue at elevated temperatures -- 7. Mechanical properties II -- Strengthening and toughening -- 7.1. Introduction -- 7.2. Strengthening of non-ferrous alloys by heat treatment -- 7.2.1. Precipitation hardening of Al-Cu alloys -- 7.2.2. Precipitation hardening of Al-Ag alloys -- 7.2.3. Mechanisms of precipitation hardening -- 7.2.4. Vacancies and precipitation -- 7.2.5. Duplex ageing -- 7.2.6. Particle coarsening -- 7.2.7. Spinodal decomposition -- 7.3. Strengthening of steels by heat treatment -- 7.3.1. Time-temperature-transformation diagrams -- 7.3.2. Austenite-pearlite transformation -- 7.3.3. Austenite-martensite transformation -- 7.3.4. Austenite-bainite transformation -- 7.3.5. Tempering of martensite -- 7.3.6. Thermomechanical treatments -- 7.4. Fracture and toughness -- 7.4.1. Griffith microcrack criterion -- 7.4.2. Fracture toughness -- 7.4.3. Cleavage and the ductile-brittle transition -- 7.4.4. Factors affecting brittleness of steels -- 7.4.5. Hydrogen embrittlement of steels -- 7.4.6. Intergranular fracture -- 7.4.7. Ductile failure -- 7.4.8. Rupture -- 7.4.9. Voiding and fracture at elevated temperatures -- 7.4.10. Fracture mechanism maps -- 7.4.11. Crack growth under fatigue conditions -- 7.5. Atomistic modeling of mechanical behavior -- 7.5.1. Multiscale modeling -- 7.5.2. Atomistic simulations of defects -- 8. Advanced alloys -- 8.1. Introduction -- 8.2. Commercial steels -- 8.2.1. Plain carbon steels -- 8.2.2. Alloy steels -- 8.2.3. Maraging steels -- 8.2.4. High-strength low-alloy (HSLA) steels -- 8.2.5. Dual-phase (DP) steels -- 8.2.6. Mechanically alloyed (MA) steels -- 8.2.7. Designation of steels -- 8.3. Cast irons -- 8.4. Superalloys -- 8.4.1. Basic alloying features -- 8.4.2. Nickel-based superalloy development -- 8.4.3. Dispersion-hardened superalloys -- 8.5. Titanium alloys -- 8.5.1. Basic alloying and heat-treatment features -- 8.5.2. Commercial titanium alloys -- 8.5.3. Processing of titanium alloys -- 8.6. Structural intermetallic compounds -- 8.6.1. General properties of intermetallic compounds -- 8.6.2. Nickel aluminides -- 8.6.3. Titanium aluminides -- 8.6.4. Other intermetallic compounds -- 8.7. Aluminum alloys -- 8.7.1. Designation of aluminum alloys -- 8.7.2. Applications of aluminum alloys -- 8.7.3. Aluminum-lithium alloys -- 8.7.4. Processing developments
9. Oxidation, corrosion and surface treatment -- 9.1. The engineering importance of surfaces -- 9.2. Metallic corrosion -- 9.2.1. Oxidation at high temperatures -- 9.2.2. Aqueous corrosion -- 9.3. Surface engineering -- 9.3.1. The coating and modification of surfaces -- 9.3.2. Surface coating by vapor deposition -- 9.3.3. Surface coating by particle bombardment -- 9.3.4. Surface modification with high-energy beams -- 9.4. Thermal barrier coatings -- 9.5. Diamond-like carbon -- 9.6. Duplex surface engineering -- 10. Non-metallics I -- Ceramics, glass, glass-ceramics -- 10.1. Introduction -- 10.2. Sintering of ceramic powders -- 10.2.1. Powdering and shaping -- 10.2.2. Sintering -- 10.3. Some engineering and commercial ceramics -- 10.3.1. Alumina -- 10.3.2. Silica -- 10.3.3. Silicates -- 10.3.4. Perovskites, titanates and spinels -- 10.3.5. Silicon carbide -- 10.3.6. Silicon nitride -- 10.3.7. Sialons -- 10.3.8. Zirconia -- 10.4. Glasses -- 10.4.1. Structure and characteristics -- 10.4.2. Processing and properties -- 10.4.3. Glass-ceramics -- 10.5. Carbon -- 10.5.1. Diamond -- 10.5.2. Graphite -- 10.5.3. Fullerenes and related nanostructures -- 10.6. Strength of ceramics and glasses -- 10.6.1. Strength measurement for brittle materials -- 10.6.2. Statistical nature and size dependence of strength -- 10.6.3. Stress corrosion cracking of ceramics and glasses -- 10.7. A case study: thermal protection system in space shuttle orbiter -- 11. Non-metallics II -- Polymers, plastics, composites -- 11.1. Polymer molecules -- 11.2. Molecular weight -- 11.3. Polymer shape and structure -- 11.4. Polymer crystallinity -- 11.5. Polymer crystals -- 11.6. Mechanical behavior -- 11.6.1. Deformation -- 11.6.2. Viscoelasticity -- 11.6.3. Fracture -- 11.7. Plastics and additives -- 11.8. Polymer processing -- 11.9. Electrical properties -- 11.10. Composites -- 11.10.1. Particulate composites -- 11.10.2. Fiber-reinforced composites -- 11.10.3. Fiber orientations -- 11.10.4. Influence of fiber length -- 11.10.5. Composite fibers -- 11.10.6. Polymer-matrix composites (PMCs) -- 11.10.7. Metal-matrix composites (MMCs) -- 11.10.8. Ceramic-matrix composites (CMCs) -- 12. Case examination of biomaterials, sports materials and nanomaterials -- 12.1. Introduction -- 12.2. Biomaterials -- 12.2.1. Introduction and bio-requirements -- 12.2.2. Introduction to bone and tissue -- 12.2.3. Case consideration of replacement joints -- 12.2.4. Biomaterials for heart repair -- 12.2.5. Reconstructive surgery -- 12.2.6. Ophthalmics -- 12.2.7. Dental materials -- 12.2.8. Drug delivery systems -- 12.3. Sports materials -- 12.3.1. Introduction -- 12.3.2. Golf equipment -- 12.3.3. Tennis equipment -- 12.3.4. Bicycles -- 12.3.5. Skiing materials -- 12.3.6. Archery -- 12.3.7. Fencing foils -- 12.3.8. Sports protection -- 12.4. Materials for nanotechnology -- 12.4.1. Introduction -- 12.4.2. Nanoparticles -- 12.4.3. Fullerenes and nanotubes -- 12.4.4. Quantum wells, wires and dots -- 12.4.5. Bulk nanostructured solids -- 12.4.6. Mechanical properties of small material volumes -- 12.4.7. Bio-nanotechnology -- Numerical answers to problems -- Appendix 1. SI units -- Appendix 2. Conversion factors, constants and physical data
Summary Physical Metallurgy and Advanced Materials is the latest edition of the classic book previously published as Modern Physical Metallurgy & Materials Engineering. Fully revised and expanded, this new edition develops on its predecessor by including detailed coverage of the latest topics in metallurgy and material science. Intended for senior undergraduates and graduate students it emphasises the science, production and applications of engineering materials. It is suitable for all post-introductory materials science courses
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Physical metallurgy.
TECHNOLOGY & ENGINEERING -- Metallurgy.
Physical metallurgy
Metallbearbeitung
Metallkunde
Metallurgie
Genre/Form dissertations.
Academic theses
Academic theses.
Thèses et écrits académiques.
Form Electronic book
Author Ngan, A. H. W.
Smallman, R. E. Modern physical metallurgy.
LC no. 2008270218
ISBN 9780080552866
0080552862
9780750669061
0750669063
1281077364
9781281077363
9786611077365
6611077367