Limit search to available items
Book Cover
E-book
Author Chrostowski, Lukas, author.

Title Silicon photonics design / Lukas Chrostowski, Michael Hochberg
Published Cambridge, United Kingdom : Cambridge University Press, 2015
©2015

Copies

Description 1 online resource (xix, 418 pages) : illustrations (chiefly color)
Contents 1. Fabless silicon photonics -- 1.1. Introduction -- 1.2. Silicon photonics: the next fabless semiconductor industry -- 1.2.1. Historical context [--] Photonics -- 1.3. Applications -- 1.3.1. Data communication -- 1.4. Technical challenges and the state of the art -- 1.4.1. Waveguides and passive components -- 1.4.2. Modulators -- 1.4.3. Photodetectors -- 1.4.4. Light sources -- 1.4.5. Approaches to photonic[--]electronic integration -- Monolithic integration -- Multi-chip integration -- 1.5. Opportunities -- 1.5.1. Device engineering -- 1.5.2. Photonic system engineering -- A transition from devices to systems -- 1.5.3. Tools and support infrastructure -- Electronic[--]photonic co-design -- DFM and yield management -- 1.5.4. Basic science -- 1.5.5. Process standardization and a history of MPW services -- ePIXfab and Europractice -- IME -- OpSIS -- CMC Microsystems -- Other organizations -- References -- 2. Modelling and design approaches -- 2.1. Optical waveguide mode solver -- 2.2. Wave propagation -- 2.2.1. 3D FDTD -- FDTD modelling procedure -- 2.2.2. 2D FDTD -- 2.2.3. Additional propagation methods -- 2D FDTD with Effective Index Method -- Beam Propagation Method (BPM) -- Eigenmode Expansion Method (EME) -- Coupled Mode Theory (CMT) -- Transfer Matrix Method (TMM) -- 2.2.4. Passive optical components -- 2.3. Optoelectronic models -- 2.4. Microwave modelling -- 2.5. Thermal modelling -- 2.6. Photonic circuit modelling -- 2.7. Physical layout -- 2.8. Software tools integration -- References -- 3. Optical materials and waveguides -- 3.1. Silicon-on-insulator -- 3.1.1. Silicon -- Silicon [--] wavelength dependence -- Silicon [--] temperature dependence -- 3.1.2. Silicon dioxide -- 3.2. Waveguides -- 3.2.1. Waveguide design -- 3.2.2. 1D slab waveguide [--] analytic method -- 3.2.3. Numerical modelling of waveguides -- 3.2.4. 1D slab [--] numerical -- Convergence tests -- Parameter sweep [--] slab thickness -- 3.2.5. Effective Index Method -- 3.2.6. Effective Index Method [--] analytic -- 3.2.7. Waveguide mode profiles [--] 2D calculations -- 3.2.8. Waveguide width [--] effective index -- 3.2.9. Wavelength dependence -- 3.2.10. Compact models for waveguides -- 3.2.11. Waveguide loss -- 3.3. Bent waveguides -- 3.3.1. 3D FDTD bend simulations -- 3.3.2. Eigenmode bend simulations -- 3.4. Problems -- 3.5. Code listings -- References -- 4. Fundamental building blocks -- 4.1. Directional couplers -- 4.1.1. Waveguide mode solver approach -- Coupler-gap dependence -- Coupler-length dependence -- Wavelength dependence -- 4.1.2. Phase -- 4.1.3. Experimental data -- 4.1.4. FDTD modelling -- FDTD versus mode solver -- 4.1.5. Sensitivity to fabrication -- 4.1.6. Strip waveguide directional couplers -- 4.1.7. Parasitic coupling -- Delta beta coupling -- 4.2. Y-branch -- 4.3. Mach[--]Zehnder interferometer -- 4.4. Ring resonators -- 4.4.1. Optical transfer function -- 4.4.2. Ring resonator experimental results -- 4.5. Waveguide Bragg grating filters -- 4.5.1. Theory -- Grating coupling coefficient -- 4.5.2. Design -- Transfer Matrix Method -- Grating physical structure design -- Modelling gratings using FDTD -- 4.5.3. Experimental Bragg gratings -- Strip waveguide gratings -- Rib waveguide gratings -- Grating period -- 4.5.4. Empirical models for fabricated gratings -- Computation lithography models -- Additional fabrication considerations -- 4.5.5. Spiral Bragg gratings -- Thermal sensitivity -- 4.5.6. Phase-shifted Bragg gratings -- 4.5.7. Multi-period Bragg gratings -- 4.5.8. Grating-assisted contra-directional couplers -- 4.6. Problems -- 4.7. Code listings -- References -- 5. Optical I/O -- 5.1. The challenge of optical coupling to silicon photonic chips -- 5.2. Grating coupler -- 5.2.1. Performance -- 5.2.2. Theory -- 5.2.3. Design methodology -- Analytic grating coupler design -- Design using 2D FDTD simulations -- Results -- Design parameters -- Cladding and buried oxide -- Compact design [--] focusing -- Mask layout -- 3D simulation -- 5.2.4. Experimental results -- 5.3. Edge coupler -- 5.3.1. Nano-taper edge coupler -- Mode overlap calculation approach -- FDTD approach -- 5.3.2. Edge coupler with overlay waveguide -- Eigenmode expansion method -- 5.4. Polarization -- 5.5. Problems -- 5.6. Code listings -- References -- 6. Modulators -- 6.1. Plasma dispersion effect -- 6.1.1. Silicon, carrier density dependence -- 6.2. pn-Junction phase shifter -- 6.2.1. pn-Junction carrier distribution -- 6.2.2. Optical phase response -- 6.2.3. Small-signal response -- 6.2.4. Numerical TCAD modelling of pn-junctions -- 6.3. Micro-ring modulators -- 6.3.1. Ring tuneability -- 6.3.2. Small-signal modulation response -- 6.3.3. Ring modulator design -- 6.4. Forward-biased PIN junction -- 6.4.1. Variable optical attenuator -- 6.5. Active tuning -- 6.5.1. PIN phase shifter -- 6.5.2. Thermal phase shifter -- 6.6. Thermo-optic switch -- 6.7. Problems -- 6.8. Code listings -- References -- 7. Detectors -- 7.1. Performance parameters -- 7.1.1. Responsivity -- 7.1.2. Bandwidth -- Transit time -- RC response -- Dark current -- 7.2. Fabrication -- 7.3. Types of detectors -- 7.3.1. Photoconductive detector -- 7.3.2. PIN detector -- 7.3.3. Avalanche detector -- Charge region design -- 7.4. Design considerations -- 7.4.1. PIN junction orientation -- 7.4.2. Detector geometry -- Detector length -- Detector width -- Detector height -- 7.4.3. Contacts -- Contact material -- Contact geometry -- 7.4.4. External load on the detector -- 7.5. Detector modelling -- 7.5.1. 3D FDTD optical simulations -- 7.5.2. Electronic simulations -- 7.6. Problems -- 7.7. Code listings -- References -- 8. Lasers -- 8.1. External lasers -- 8.2. Laser modelling -- 8.3. Co-packaging -- 8.3.1. Pre-made laser -- 8.3.2. External cavity lasers -- 8.3.3. Etched-pit embedded epitaxy -- 8.4. Hybrid silicon lasers -- 8.5. Monolithic lasers -- 8.5.1. Ill[--]V Monolithic growth -- 8.5.2. Germanium lasers -- 8.6. Alternative light sources -- 8.7. Problem -- References -- 9. Photonic circuit modelling -- 9.1. Need for photonic circuit modelling -- 9.2. Components for system design -- 9.3. Compact models -- 9.3.1. Empirical or equivalent circuit models -- 9.3.2. S-parameters -- 9.4. Directional coupler [--] compact model -- 9.4.1. FDTD simulations -- 9.4.2. FDTD S-parameters -- Directional coupler S-parameters -- 9.4.3. Empirical model [--] polynomial -- 9.4.4. S-parameter model passivity -- Passivity assessment -- Passivity enforcement -- 9.5. Ring modulator [--] circuit model -- 9.6. Grating coupler [--] S-parameters -- 9.6.1. Grating coupler circuits -- 9.7. Code listings -- References -- 10. Tools and techniques -- 10.1. Process design kit (PDK) -- 10.1.1. Fabrication process parameters -- Silicon thickness and etch -- GDS layer map -- Design rules -- 10.1.2. Library -- 10.1.3. Schematic capture -- 10.1.4. Circuit export -- 10.1.5. Schematic-driven layout -- 10.1.6. Design rule checking -- 10.1.7. Layout versus schematic -- 10.2. Mask layout -- 10.2.1. Components -- 10.2.2. Layout for electrical and optical testing -- 10.2.3. Approaches for fast GDS layout -- 10.2.4. Approaches for space-efficient GDS layout -- References -- 11. Fabrication -- 11.1. Fabrication non-uniformity -- 11.1.1. Lithography process contours -- 11.1.2. Corner analysis -- 11.1.3. On-chip non-uniformity, experimental results -- Ring resonators -- Grating couplers -- 11.2. Problems -- References -- 12. Testing and packaging -- 12.1. Electrical and optical interfacing -- 12.1.1. Optical interfaces -- Grating couplers -- Edge couplers -- Individual fibres -- Spot-size converter -- Fibre array -- Free-space coupling -- Fibre taper coupling -- 12.1.2. Electrical interfaces -- Bond pads -- Probing -- Wire bonding -- Flip-chip bonding -- 12.2. Automated optical probe stations -- 12.2.1. Parts -- Sample stage -- Fibre array probe -- Electrical probes -- Microscopes -- 12.2.2. Software -- 12.2.3. Operation -- Loading and aligning a chip/wafer -- Aligning the fibre array -- Chip registration -- Automated device testing -- 12.2.4. Optical test equipment -- 12.3. Design for test -- 12.3.1. Optical power budgets -- 12.3.2. Layout considerations -- 12.3.3. Design review and checklist -- References -- 13. Silicon photonic system example -- 13.1. Wavelength division multiplexed transmitter -- 13.1.1. Ring-based WDM transmitter architectures -- 13.1.2. Common-bus WDM transmitter -- 13.1.3. Mod-Mux WDM transmitter -- 13.1.4. Conclusion -- References
Summary From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are fully equipped for careers in industry. Step-by-step tutorials, straightforward examples, and illustrative source code fragments guide students through every aspect of the design process, providing a practical framework for developing and refining key skills. Offering industry-ready expertise, the text supports existing PDKs for CMOS UV-lithography foundry services (OpSIS, ePIXfab, imec, LETI, IME and CMC) and the development of new kits for proprietary processes and clean-room based research. Accompanied by additional online resources to support students, this is the perfect learning package for senior undergraduate and graduate students studying silicon photonics design, and academic and industrial researchers involved in the development and manufacture of new silicon photonics systems
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Silicon -- Optical properties
Photonics.
Microwave integrated circuits -- Design and construction
TECHNOLOGY & ENGINEERING -- Electronics -- Optoelectronics.
Microwave integrated circuits -- Design and construction
Photonics
Silicon -- Optical properties
Form Electronic book
Author Hochberg, Michael E., author.
ISBN 9781316084168
1316084167
9781523113439
152311343X
9781316237113
1316237117