Limit search to available items
Book Cover
E-book

Title Electrical design for ocean wave and tidal energy systems / edited by Raymond Alcorn and Dara O'Sullivan
Published London : Institution of Engineering and Technology, 2013
Table of Contents
 List of contributorsxi
 Acknowledgementsxiii
 Forewordxv
1.Introduction1
2.Electrical generators in ocean energy converters3
2.1.Introduction3
2.2.Overview of generator drive train options4
2.2.1.Fixed speed solutions5
2.2.2.Variable speed solutions5
2.3.Overview of generator functionality in ocean energy converters7
2.3.1.Power conversion7
2.3.2.Prime mover efficiency optimization8
2.3.3.Power smoothing8
2.3.4.Device damping control8
2.4.Generators in wave energy systems9
2.4.1.Brush operation9
2.4.2.Operation and maintenance11
2.4.3.Corrosive environment11
2.4.4.Mechanical issues11
2.4.5.Requirements by WEC category12
2.5.Generators in tidal energy systems14
2.5.1.Tidal stream and tidal energy converter characteristics15
2.5.2.Generator system specifications19
2.6.Power electronics for generator control in ocean energy converters24
2.6.1.Control of back-to-back converters in full-converter variable speed configurations25
2.6.2.Generator-side power converter control25
2.6.3.Grid-side power converter control30
2.6.4.Fault operation of variable speed drives35
2.7.Summary37
2.8.References37
3.Cabling umbilical and array layout43
3.1.Definition of grid connection layout43
3.1.1.Introduction43
3.1.2.General requirements and constraining factors44
3.1.3.Definition of array layout47
3.1.4.Power transmission options53
3.1.5.Models for power transmission55
3.1.6.Efficiency of the power transmission57
3.1.7.Design of cable transmission60
3.2.Engineering of grid connection infrastructures61
3.2.1.Definition of connection points63
3.2.2.Components of grid connection infrastructures65
3.2.3.Conceptual alternatives for connection units67
3.3.Dynamic cable and connector design74
3.3.1.Reference standards and guidelines74
3.3.2.Composition of a typical subsea cable75
3.3.3.Preliminary definition and design of umbilical components80
3.3.4.Mechanical model and validation of umbilical cables93
3.3.5.Connectors for marine energy devices97
3.3.6.Ancillary components99
3.3.7.Dynamic analysis of umbilical connections102
3.3.8.Recommendations and final remarks105
3.4.References106
4.Grid integration: part I - power system interactions of wave energy generators111
4.1.Introduction111
4.2.Interaction of wave energy generation with the electrical grid111
4.2.1.Properties of the generated power112
4.2.2.Offshore vs. near-shore and HVAC transmission113
4.2.3.Power smoothing115
4.2.4.Effect of the energy storage devices116
4.2.5.Effect of oscillating power on protection equipment118
4.2.6.Effect of the oscillating power on the voltages119
4.2.7.Control of the reactive power122
4.2.8.Effect of the oscillating power on the frequency123
4.2.9.Control of the speed governors125
4.3.Off-grid operation of ocean energy systems127
4.3.1.Systems for electrification in remote areas127
4.3.2.Systems for off-grid testing of prototype devices129
4.4.Conclusions129
4.5.References130
5.Grid integration: part II - power quality issues133
5.1.Power quality of waveform133
5.1.1.Introduction133
5.1.2.Voltage134
5.1.3.Frequency144
5.1.4.Long-duration interruptions144
5.2.Power quality of supply145
5.2.1.Earthing/Neutral treatment145
5.2.2.Voltage control and support146
5.2.3.Power output controllability147
5.2.4.Frequency reserve response148
5.2.5.Low-voltage fault ride-through150
5.2.6.Black start capability151
5.2.7.Metering/telemetry and telecontrol151
5.2.8.Grid operators' disconnection rights152
5.3.Guidelines and standards152
5.3.1.Introduction152
5.3.2.International standards154
5.3.3.National standards155
5.4.Conclusions158
5.5.References158
6.Grid integration: part III - case studies161
6.1.Introduction161
6.2.Case study: tidal energy - SeaGen161
6.2.1.Introduction161
6.2.2.Test methodologies164
6.2.3.SeaGen power quality performance compared with similar wind turbines170
6.2.4.Conclusions173
6.3.Case study: wave energy174
6.3.1.Introduction174
6.3.2.Impact of a point absorber farm on the local grid of the bimep and AMETS test sites176
6.3.3.Analysis of the flicker level as a function of a test site's short-circuit characteristics182
6.4.Capacity value of wave energy199
6.4.1.Capacity factor and capacity value: measuring generation system adequacy199
6.4.2.Capacity value calculation201
6.4.3.Case study: Ireland203
6.5.References211
7.Electrical energy storage systems217
7.1.Introduction217
7.2.Motivations for energy storage217
7.2.1.Power smoothing217
7.2.2.Low-voltage ride-through (LVRT)220
7.2.3.Ancillary services220
7.3.Approaches to implementation of energy storage220
7.3.1.Approaches to the implementation of energy storage for a farm of WECs220
7.3.2.Approaches to the implementation of energy storage for individual WECs221
7.3.3.Energy storage strategies in the electrical power take-off systems of offshore WECs226
7.4.Electrical energy storage - technology description227
7.4.1.Superconducting magnetic energy storage (SMES)227
7.4.2.Batteries228
7.4.3.Supercapacitors (SCs)228
7.4.4.Capacitors228
7.4.5.Technology comparison229
7.5.EES case studies230
7.6.Issues associated with electrical energy storage241
7.6.1.Cycling241
7.6.2.Ageing model251
7.7.Sizing of the capacity according to performance criterions253
7.7.1.Smoothing quality criteria253
7.8.References260
8.Control systems - design and implementation265
8.1.Overview of control scheme265
8.1.1.Introduction265
8.1.2.What is control?267
8.1.3.Control systems for ocean energy273
8.1.4.Conclusions277
8.2.Implications of control schemes for electrical system design in tidal energy converters277
8.2.1.General control strategy for tidal current energy extraction278
8.2.2.Fixed-speed variable-pitch tidal turbine279
8.2.3.Variable-speed fixed-pitch turbine279
8.2.4.Tidal turbine control282
8.3.Implications of control schemes for electrical system design in wave energy converters286
8.3.1.Introduction286
8.3.2.Relationship between control schemes and the WEC electrical system286
8.3.3.Impact of efficiency on power extraction292
8.3.4.Discussion295
8.4.References296
9.Modelling and simulation techniques303
9.1.Resource to wire modelling for tidal turbines303
9.1.1.Modelling requirements304
9.1.2.Resource modelling304
9.1.3.Hydrodynamic modelling of an horizontal axis turbine306
9.1.4.Drive train modelling309
9.1.5.Generator modelling310
9.1.6.Global model of the system311
9.2.Resource to wire modelling techniques for wave energy converters313
9.2.1.Performance analyses314
9.2.2.Grid integration analysis317
9.3.Power system dynamic models318
9.3.1.Dynamic models for power systems318
9.3.2.Model development and analysis319
9.3.3.Experience from the wind industry321
9.3.4.Requirements for OE industry324
9.4.References325
10.Economics of ocean energy electrical systems329
10.1.Economic challenges and optimisation of ocean energy electrical systems329
10.1.1.Introduction and components of ocean energy electrical systems329
10.1.2.Expected costs for electrical system components330
10.1.3.Economic challenges for ocean energy electrical systems331
10.1.4.Techno-economic optimisation of ocean energy electrical systems336
10.1.5.Cost reduction of ocean energy electrical systems339
10.2.Ocean energy system economics and cost of electricity345
10.2.1.Introduction345
10.2.2.Capex345
10.2.3.OPEX costs350
10.2.4.Decommissioning and salvage costs353
10.2.5.Revenue methods: tariffs and ROCS353
10.2.6.Economic input factors356
10.2.7.Debt/equity357
10.2.8.Economic indicators358
10.2.9.Techno-economic analysis methods and tools362
10.3.References362
 Index371
Online access available from:
IET eBook Collection    View Resource Record  

Copies

Description 1 online resource (xii, 383 pages.)
Series IET renewable energy series ; 17
IET renewable energy series ; 17
Notes Description based on print version record
YBP DDA
Subject Ocean energy resources.
Form Electronic book
Author Alcorn, J. R. (J. Ray), 1911- editor of compilation
ISBN 9781849195645 (electronic bk.)
1849195641 (electronic bk.)