Limit search to available items
Book Cover
Book
Author Gault, Baptiste.

Title Atom probe microscopy / Baptiste Gault ... [and others]
Published New York : Springer, [2012]
©2012

Copies

Location Call no. Vol. Availability
 W'PONDS  502.82 Gau/Apm  DUE 16-05-24
Description xxiii, 396 pages : illustrations (chiefly color) ; 25 cm
Series Springer series in materials science, 0933-033X ; 160
Springer series in materials science. 0933-033X ; 160
Contents Contents note continued: 3.2.5.Energy-Compensation Techniques -- References -- pt. II Practical Aspects -- 4.Specimen Preparation -- 4.1.Introduction -- 4.1.1.Sampling Issues in Microscopy for Materials Science and Engineering -- 4.1.2.Specimen Requirements -- 4.2.Polishing Methods -- 4.2.1.The Electropolishing Process -- 4.2.2.Chemical Polishing -- 4.2.3.Safety Considerations -- 4.2.4.Advantages and Limitations -- 4.3.Broad Ion-Beam Techniques -- 4.4.Focused Ion-Beam Techniques -- 4.4.1.Cut-Away Methods -- 4.4.2.Lift-out Methods -- 4.4.3.The Final Stages of FIB Preparation -- 4.4.4.Understanding and Minimising Ion-Beam Damage and Other Artefacts -- 4.5.Deposition Methods for Preparing Coatings and Films -- 4.6.Methods for Preparing Organic Materials -- 4.6.1.Polymer Microtips -- 4.6.2.Self-assembled Monolayers -- 4.6.3.Cryo-Preparation -- 4.7.Other Methods -- 4.7.1.Dipping -- 4.7.2.Direct Growth of Suitable Structures -- 4.8.Issues Associated with Specimen Geometry --
Contents note continued: 4.8.1.Influence of Specimen Geometry on Data Quality -- 4.9.A Guide to Selecting an Optimal Method for Specimen Preparation -- References -- 5.Experimental Protocols in Field Ion Microscopy -- 5.1.Step-by-Step Procedures for FIM -- 5.2.Operational Space of the Field Ion Microscope -- 5.2.1.Imaging-Gas -- 5.2.2.Temperature -- 5.2.3.The "Best Image Field" -- 5.2.4.Other Parameters -- 5.3.Summary -- References -- 6.Experimental Protocols in Atom Probe Tomography -- 6.1.Specimen Alignment -- 6.2.Aspects of Mass Spectrometry -- 6.2.1.Detection of the Ions -- 6.2.2.Mass Spectra -- 6.2.3.Formation of the Mass Spectrum -- 6.2.4.Mass Resolution -- 6.2.5.Common Artefacts -- 6.2.6.Elemental Identification -- 6.2.7.Measurement of the Composition -- 6.2.8.Detectability -- 6.3.Operational Space -- 6.3.1.Flight Path -- 6.3.2.Pulse Fraction and Base Temperature -- 6.3.3.Selecting the Pulsing Mode -- 6.3.4.Pulsing Rate -- 6.3.5.Detection Rate -- 6.4.Specimen Failure --
Contents note continued: 6.5.Assessment of Data Quality -- 6.5.1.Field Desorption map -- 6.5.2.Mass Spectrum -- 6.5.3.Multiple Events -- 6.6.Discussion -- References -- 7.Tomographic Reconstruction -- 7.1.Projection of the Ions -- 7.1.1.Estimation of the Electric Field -- 7.1.2.Field Distribution -- 7.1.3.Ion Trajectories -- 7.1.4.Point-Projection Model -- 7.1.5.Radial Projection with Angular Compression -- 7.1.6.Which Is the Best Model of Ion Trajectories? -- 7.2.Reconstruction -- 7.2.1.Fundamentals of the Reconstruction Protocol -- 7.2.2.Bas et al. Protocol -- 7.2.3.Geiser et al. Protocol -- 7.2.4.Gault et al. Protocol -- 7.2.5.Reflectron-Fitted Instruments -- 7.2.6.Summary and Discussion -- 7.3.Calibration of the Reconstruction -- 7.3.1.Techniques for Calibrating the Reconstruction Parameters -- 7.3.2.Importance of Calibrating the Reconstruction -- 7.3.3.Limitations of the Current Procedures -- 7.4.Common Artefacts and Potential Corrections --
Contents note continued: 7.4.1.Trajectory Aberrations and Local Magnification Effects -- 7.4.2.Surface Migration -- 7.4.3.Chromatic Aberrations -- 7.4.4.Impact of These Artefact on Atom Probe Data -- 7.4.5.Correction of the Reconstruction -- 7.5.Perspectives on the Reconstruction in Atom Probe Tomography -- 7.5.1.Advancing the Reconstruction by Correlative Microscopy -- 7.5.2.Improving Reconstructions with Simulations -- 7.5.3.Alternative Ways to Reconstruct Atom Probe Data -- 7.6.Spatial Resolution in APT -- 7.6.1.Introduction -- 7.6.2.Means of Investigation -- 7.6.3.Definition of the Spatial Resolution -- 7.6.4.Depth Resolution -- 7.6.5.Lateral Resolution -- 7.6.6.Optimisation of the Spatial Resolution -- 7.7.Lattice Rectification -- References -- pt. III Applying Atom Probe Techniques for Materials Science -- 8.Analysis Techniques for Atom Probe Tomography -- 8.1.Characterising the Mass Spectrum -- 8.1.1.Noise Reduction --
Contents note continued: 8.1.2.Quantifying Peak Contributions from Isotopic Natural Abundances -- 8.1.3.Spatially Dependent Identification of Mass Peaks -- 8.1.4.Analyses of Multi-hit Detector Events -- 8.2.Characterising the Chemical Distribution -- 8.2.1.Quality of Atom Probe Data -- 8.2.2.Random Comparators -- 8.3.Grid-Based Counting Statistics -- 8.3.1.Voxelisation -- 8.3.2.Density -- 8.3.3.Concentration Analyses -- 8.3.4.Smoothing by Delocalisation -- 8.3.5.Visualisation Techniques Based on Isoconcentration and Isodensity -- 8.3.6.One-Dimensional Profiles -- 8.3.7.Grid-Based Frequency Distribution Analyses -- 8.4.Techniques for Describing Atomic Architecture -- 8.4.1.Nearest Neighbour Distributions -- 8.4.2.Cluster Identification Algorithms -- 8.4.3.Influence of Detection Efficiency on Nanostructural Analyses -- 8.5.Radial-Distributions -- 8.5.1.Radial-Distribution and Pair Correlation Functions -- 8.5.2.Solute Short-Range Order Parameters -- 8.6.Structural Analyses --
Contents note continued: 8.6.1.Fourier Transforms for APT -- 8.6.2.Spatial Distribution Maps -- 8.6.3.Hough Transform -- References -- 9.Atom Probe Microscopy and Materials Science -- 9.1.Phase Composition -- 9.2.Crystal Defects -- 9.3.Solute-Atom Clustering and Short Range Order -- 9.4.Precipitation Reactions -- 9.5.Long-Range Order -- 9.6.Spinodal Decomposition -- 9.7.Interfaces -- 9.8.Amorphous Materials -- 9.9.Atom Probe Crystallography -- References -- Appendices -- A.Appendix: Χ2 Distribution -- References -- B.Appendix: Polishing Chemicals and Conditions -- References -- C.Appendix: File Formats Used in APT -- POS -- EPOS -- RNG -- RRNG -- ATO -- ENV -- PoSAP -- Cameca Root Files: RRAW, RHIT, ROOT -- D.Appendix: Image Hump Model Predictions -- E.Appendix: Essential Crystallography for APT -- Bravais Lattices -- Notation -- Structure Factor (F) Rules for bcc, fcc, hcp -- Interplanar Spacings (dhkl) -- Interplanar Angles (φ) --
Contents note continued: F.Appendix: Stereographic Projections and Commonly Observed Desorption Maps -- Stereographic Projection for the Most Commonly Found Structures and Orientations -- References -- G.Appendix: Periodic Tables -- H.Appendix: Kingham CURVES -- References -- I.Appendix: List of Elements and Associated Mass to Charge Ratios -- J.Appendix: Possible Element Identity of Peaks as a Function of their Location in the Mass Spectrum
Machine generated contents note: pt. I Fundamentals -- 1.Introduction -- References -- 2.Field Ion Microscopy -- 2.1.Principles -- 2.1.1.Theory of Field Ionisation -- 2.1.2."Seeing" Atoms: Field Ion Microscopy -- 2.1.3.Spatial Resolution of FIM -- 2.2.Instrumentation and Techniques for FIM -- 2.2.1.FIM Instrumentation -- 2.2.2.eFIM or Digital FIM -- 2.2.3.Tomographic FIM Techniques -- 2.3.Interpretation of FIM Images -- 2.3.1.Interpretation of the Image in a Pure Material -- 2.3.2.Interpretation of the Image for Alloys -- 2.3.3.Selected Applications of the FIM -- 2.3.4.Summary -- References -- 3.From Field Desorption Microscopy to Atom Probe Tomography -- 3.1.Principles -- 3.1.1.Theory of Field Evaporation -- 3.1.2."Analysing" Atoms one-by-one: Atom Probe Tomography -- 3.2.Instrumentation and Techniques for APT -- 3.2.1.Experimental Setup -- 3.2.2.Field Desorption Microscopy -- 3.2.3.HV-Pulsing Techniques -- 3.2.4.Laser-Pulsing Techniques --
Summary Atom probe microscopy enables the characterization of materials structure and chemistry in three dimensions with near-atomic resolution. This uniquely powerful technique has been subject to major instrumental advances over the last decade with the development of wide-field-of-view detectors and pulsed-laser-assisted evaporation that have significantly enhanced the instrument's capabilities. The field is flourishing, and atom probe microscopy is being embraced as a mainstream characterization technique. This book covers all facets of atom probe microscopy--including field ion microscopy, field desorption microscopy and a strong emphasis on atom probe tomography. Atom Probe Microscopy is aimed at researchers of all experience levels. It will provide the beginner with the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques. This includes detailed explanations of the fundamentals and the instrumentation, contemporary specimen preparation techniques, experimental details, and an overview of the results that can be obtained. The book emphasizes processes for assessing data quality, and the proper implementation of advanced data mining algorithms. Those more experienced in the technique will benefit from the book as a single comprehensive source of indispensable reference information, tables and techniques. Both beginner and expert will value the way that Atom Probe Microscopy is set out in the context of materials science and engineering, and includes references to key recent research outcomes. Provides the most practical, up-to-date and critical review of atom probe microscopy techniquesPresents a detailed description of the analysis tools Includes practical examples of how the technique can be used in materials science research Stands as a must-have reference for any user of atom probe microscopy
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Atom-probe field ion microscopy.
Atomic force microscopy.
Scanning probe microscopy.
Author Gault, Baptiste.
LC no. 2012936826
ISBN 9781461434351 (cased)
(ebook)