Limit search to available items
Book Cover
Book
Author Taranath, Bungale S.

Title Structural analysis and design of tall buildings : steel and composite construction / Bungale S. Taranath
Published Boca Raton, FL. : CRC Press, [2012]
Boca Raton, FL. : CRC Press, c2012
©2012

Copies

Location Call no. Vol. Availability
 W'PONDS  690.383 Tar/Saa  AVAILABLE
 W'PONDS  690.383 Tar/Saa  AVAILABLE
 W'PONDS  690.383 Tar/Saa  AVAILABLE
Description liii, 635 pages, 32 unnumbered pages of plates : illustrations (some color), maps ; 26 cm
Contents Preview -- 1.1.Rigid Frames -- 1.1.1.Frames with Partially Rigid Connections -- 1.1.2.Review of Connection Behavior -- 1.1.2.1.Connection Classification -- 1.1.2.2.Connection Strength -- 1.1.2.3.Connection Ductility -- 1.1.2.4.Structural Analysis and Design -- 1.1.3.Beam Line Concept -- 1.2.Frames with Fully Restrained Connections -- 1.2.1.Special Moment Frame, Historic Perspective -- 1.2.1.1.Deflection Characteristics -- 1.2.2.Cantilever Bending Component -- 1.2.3.Shear Racking Component -- 1.2.4.Methods of Analysis -- 1.2.5.Drift Calculations -- 1.2.6.Truss Moment Frames -- 1.3.Concentric Braced Frames -- 1.3.1.Behavior -- 1.3.2.Types of Concentric Braces -- 1.4.Eccentric Braced Frames -- 1.4.1.Behavior -- 1.4.2.Deflection Characteristics -- 1.4.3.Seismic Design Considerations -- 1.4.3.1.Link Beam Design -- 1.4.3.2.Link-to-Column Connections -- 1.4.3.3.Diagonal Brace and Beam outside of Links -- 1.4.3.4.Link Stiffness -- 1.4.3.5.Columns --
1.4.3.6.Schematic Details -- 1.5.Buckling-Restrained Brace Frame -- 1.6.Steel Plate Shear Wall -- 1.6.1.Low-Seismic Design -- 1.6.2.High-Seismic Design -- 1.6.2.1.Behavior -- 1.6.2.2.AISC 341-05 Requirements for Special Plate Shear Walls -- 1.6.2.3.Modeling for Analysis -- 1.6.2.4.Capacity Design Methods -- 1.7.Staggered Truss -- 1.7.1.Behavior -- 1.7.2.Design Considerations -- 1.7.2.1.Floor Systems -- 1.7.2.2.Columns -- 1.7.2.3.Trusses -- 1.7.3.Seismic Design of Staggered Truss System -- 1.7.3.1.Response of Staggered Truss System to Seismic Loads -- 1.8.Interacting System of Braced and Rigid Frames -- 1.8.1.Behavior -- 1.9.Core and Outrigger Systems -- 1.9.1.Behavior -- 1.9.1.1.Outrigger Located at Top -- 1.9.1.2.Outrigger Located at Three-Quarter Height from Bottom -- 1.9.1.3.Outrigger at Mid-Height -- 1.9.1.4.Outriggers at Quarter-Height from Bottom -- 1.9.2.Optimum Location of a Single Outrigger -- 1.9.2.1.Analysis Outline --
1.9.2.2.Detail Analysis -- 1.9.2.3.Computer Analysis -- 1.9.2.4.Conclusions -- 1.9.3.Optimum Locations of Two Outriggers -- 1.9.3.1.Recommendations for Optimum Locations -- 1.9.4.Vulnerability of Core and Outrigger System to Progressive Collapse -- 1.9.5.Offset Outriggers -- 1.9.6.Example Projects -- 1.10.Frame Tube Systems -- 1.10.1.Behavior -- 1.10.2.Shear Lag -- 1.11.Irregular Tube -- 1.12.Trussed Tube -- 1.13.Bundled lithe -- 1.13.1.Behavior -- 1.14.Ultimate High-Efficiency Systems for Ultra Tall Buildings -- Preview -- 2.1.Composite Members -- 2.1.1.Composite Slabs -- 2.1.2.Composite Girders -- 2.1.3.Composite Columns -- 2.1.4.Composite Diagonals -- 2.1.5.Composite Shear Walls -- 2.2.Composite Subsystems -- 2.2.1.Composite Moment Frames -- 2.2.1.1.Ordinary Moment Frames -- 2.2.1.2.Special Moment Frames -- 2.2.2.Composite Braced Frames -- 2.2.3.Composite Eccentrically Braced Frames -- 2.2.4.Composite Construction -- 2.2.5.Temporary Bracing --
2.3.Composite Building Systems -- 2.3.1.Reinforced Concrete Core with Steel Surround -- 2.3.2.Shear Wall-Frame Interacting Systems -- 2.3.3.Composite Tube Systems -- 2.3.4.Vertically Mixed Systems -- 2.3.5.Mega Frames with Super Columns -- 2.3.6.High-Efficiency Structure: Structural Concept -- 2.4.Seismic Design of Composite Buildings -- Preview -- 3.1.General Considerations -- 3.1.1.Steel and Cast Iron: Historical Perspective -- 3.1.1.1.Chronology of Steel Buildings -- 3.1.1.2.1920 through 1950 -- 3.1.1.3.1950 through 1970 -- 3.1.1.4.1970 to Present -- 3.1.2.Gravity Loads -- 3.1.3.Design Load Combinations -- 3.1.4.Required Strength -- 3.1.5.Limit States -- 3.1.6.Design for Strength Using Load and Resistance Factor Design -- 3.1.7.Serviceability Concerns -- 3.1.8.Deflections -- 3.2.Design of Members Subject to Compression -- 3.2.1.Buckling of Columns, Fundamentals -- 3.2.1.1.Euler's Formula -- 3.2.1.2.Energy Method of Calculating Critical Loads --
3.2.2.Behavior of Compression Members -- 3.2.2.1.Element Instability -- 3.2.3.Limits on Slenderness Ratio, KL/r -- 3.2.4.Column Curves: Compressive Strength of Members without Slender Elements -- 3.2.5.Columns with Slender Unstiffened Elements: Yield Stress Reduction Factor, Q -- 3.2.6.Design Examples: Compression Members -- 3.2.6.1.Wide Flange Column, Design Example -- 3.2.6.2.HSS Column, Design Example -- 3.3.Design of Members Subject to Bending -- 3.3.1.Compact, Noncompact, and Slender Sections -- 3.3.2.Flexural Design of Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis -- 3.3.3.Design Examples, Members Subject to Bending and Shear -- 3.3.3.1.General Comments -- 3.3.3.2.Simple-Span Beam, Braced Top Flange -- 3.3.3.3.Simple-Span Beam, Unbraced Top Flange -- 3.4.Tension Members -- 3.4.1.Design Examples -- 3.4.1.1.Plate in Tension, Bolted Connection -- 3.4.1.2.Plate in Tension, Welded Connection --
3.4.1.3.Double-Angle Hanger -- 3.4.1.4.Bottom Chord of a Long-Span Truss -- 3.4.1.5.Pin-Connected Tension Member -- 3.4.1.6.Eyebar Tension Member -- 3.5.Design for Shear, Additional Comments -- 3.5.1.Transverse Stiffeners -- 3.5.2.Tension Field Action -- 3.6.Design of Members for Combined Forces and Torsion (in Other Words, Members Subjected to Torture) -- 3.7.Design for Stability -- 3.7.1.Behavior of Beam Columns -- 3.7.2.Buckling of Columns -- 3.7.3.Second-Order Effects -- 3.7.4.Deformation of the Structure -- 3.7.5.Residual Stresses -- 3.7.6.Notional Load -- 3.7.7.Geometric Imperfections -- 3.7.8.Leaning Columns -- 3.8.AISC 360-10 Stability Provisions -- 3.8.1.Second-Order Analysis -- 3.8.2.Reduced Stiffness in the Analysis -- 3.8.3.Application of Notional Loads -- 3.8.4.Member Strength Checks -- 3.8.5.Step-by-Step Procedure for Direct Analysis Method -- 3.9.Understanding How Commercial Software Works -- Preview -- 4.1.Composite Metal Deck --
4.1.1.SDI Specifications -- 4.2.Composite Beams -- 4.2.1.AISC Design Criteria: Composite Beams with Metal Deck and Concrete Topping -- 4.2.1.1.AISC Requirements, General Comments -- 4.2.1.2.Effective Width -- 4.2.1.3.Positive Flexural Strength -- 4.2.1.4.Negative Flexural Strength -- 4.2.1.5.Shear Connectors -- 4.2.1.6.Deflection Considerations -- 4.2.1.7.Design Outline for Composite Beam -- 4.3.Composite Joists and Trusses -- 4.3.1.Composite Joists -- 4.3.2.Composite Trusses -- 4.4.Other Types of Composite Floor Construction -- 4.5.Continuous Composite Beams -- 4.6.Nonprismatic Composite Beams and Girders -- 4.7.Moment-Connected Composite Haunch Girders -- 4.8.Composite Stub Girders -- 4.8.1.Behavior and Analysis -- 4.8.2.Stub Girder Design Example -- 4.8.3.Moment-Connected Stub Girder -- 4.8.4.Strengthening of Stub Girder -- 4.9.Composite Columns -- 4.9.1.Behavior -- 4.9.2.AISC Design Criteria, Encased Composite Columns -- 4.9.2.1.Limitations --
4.9.2.2.Compressive Strength -- 4.9.2.3.Tensile Strength -- 4.9.2.4.Shear Strength -- 4.9.2.5.Load Transfer -- 4.9.2.6.Detailing Requirements -- 4.9.2.7.Strength of Stud Shear Connectors -- 4.9.3.AISC Design Criteria for Filled Composite Columns -- 4.9.3.1.Limitations -- 4.9.3.2.Compressive Strength -- 4.9.3.3.Tensile Strength -- 4.9.3.4.Shear Strength -- 4.9.3.5.Load Transfer -- 4.9.4.Summary of Composite Design Column -- 4.9.4.1.Nominal Strength of Composite Sections -- 4.9.4.2.Encased Composite Columns -- 4.9.4.3.Filled Composite Columns -- 4.9.5.Combined Axial Force and Flexure -- Preview -- 5.1.Design Considerations -- 5.2.Variation of Wind Velocity with Height (Velocity Profile) -- 5.3.Probabilistic Approach -- 5.4.Vortex Shedding -- 5.5.ASCE 7-05 Wind Load Provisions -- 5.5.1.Analytical Procedure: Method 2, Overview -- 5.5.2.Analytical Method: Step-by-Step Procedure -- 5.5.3.Wind Speed-Up over Hills and Escarpments: Kzt Factor --
5.5.4.Gust Effect Factor -- 5.5.4.1.Gust Effect Factor G for Rigid Structure: Simplified Method -- 5.5.4.2.Gust Effect Factor G for Rigid Structure: Improved Method -- 5.5.4.3.Gust Effect Factor Gf for Flexible or Dynamically Sensitive Buildings -- 5.5.5.Along-Wind Displacement and Acceleration -- 5.5.6.Summary of ASCE 7-05 Wind Provisions -- 5.6.Wind-Tunnel Tests -- 5.6.1.Types of Wind-Tunnel Tests -- 5.6.2.Option for Wind-Tunnel Testing -- 5.6.3.Lower Limits on Wind-Tunnel Test Results -- 5.6.3.1.Lower Limit on Pressures for Main Wind-Force Resisting System -- 5.6.3.2.Lower Limit on Pressures for Components and Cladding -- 5.7.Building Drift -- 5.8.Human Response to Wind-Induced Building Motions -- 5.9.Structural Properties Required for Wind Tunnel Data Analysis -- 5.9.1.Natural Frequencies -- 5.9.2.Mode Shapes -- 5.9.3.Mass Distribution -- 5.9.4.Damping Ratio -- 5.9.5.Miscellaneous Information -- 5.10.Period Determination for Wind Design --
5.11.ASCE 7-10 Wind Load Provisions -- 5.11.1.New Wind Speed Maps -- 5.11.2.Return of Exposure D -- 5.11.3.Wind-Borne Debris -- Preview -- 6.1.Structural Dynamics -- 6.1.1.Dynamic Loads -- 6.1.1.1.Concept of Dynamic Load Factor -- 6.1.1.2.Difference between Static and Dynamic Analysis -- 6.1.1.3.Dynamic Effects due to Wind Gusts -- 6.1.2.Characteristics of a Dynamic Problem -- 6.1.3.Multiple Strategy of Seismic Design -- 6.1.3.1.Example of Portal Frame Subject to Ground Motions -- 6.1.4.Concept of Dynamic Equilibrium -- 6.1.5.Free Vibrations -- 6.1.6.Earthquake Excitation -- 6.1.6.1.Single-Degree-of-Freedom Systems -- 6.1.6.2.Numerical Integration, Design Example -- 6.1.6.3.Numerical Integration: A Summary -- 6.1.6.4.Summary of Structural Dynamics -- 6.1.7.Response Spectrum Method -- 6.1.7.1.Earthquake Response Spectrum -- 6.1.7.2.Deformation Response Spectrum -- 6.1.7.3.Pseudo-Velocity Response Spectrum -- 6.1.7.4.Pseudo-Acceleration Response Spectrum --
6.1.7.5.Tripartite Response Spectrum: Combined Displacement[-]Velocity[-]Acceleration Spectrum -- 6.1.7.6.Characteristics of Response Spectrum -- 6.1.7.7.Difference between Design and Actual Response Spectra -- 6.1.7.8.Summary of Response Spectrum Analysis -- 6.1.8.Hysteresis Loop -- 6.2.Seismic Design Considerations -- 6.2.1.Seismic Response of Buildings -- 6.2.1.1.Building Motions and Deflections -- 6.2.1.2.Building Drift and Separation -- 6.2.1.3.Adjacent Buildings -- 6.2.2.Continuous Load Path -- 6.2.3.Building Configuration -- 6.2.4.Influence of Soil -- 6.2.5.Ductility -- 6.2.6.Redundancy -- 6.2.7.Damping -- 6.2.8.Diaphragms -- 6.2.9.Response of Elements Attached to Buildings -- 6.3.ASCE 7-05 Seismic Design Criteria and Requirements: Overview -- 6.3.1.Seismic Ground Motion Values, Ss and S1 -- 6.3.2.Site Coefficients Fa and Fv -- 6.3.3.Site Class SA, SB, SC, SD, SE, and SF --
6.3.4.Response Spectrum for the Determination of Design Base Shear -- 6.3.5.Site-Specific Ground Motion Analysis -- 6.3.6.Importance Factor IE -- 6.3.7.Occupancy Categories -- 6.3.7.1.Protected Access for Occupancy Category IV -- 6.3.8.Seismic Design Category -- 6.3.9.Design Requirements for SDC A Buildings -- 6.3.9.1.Lateral Forces -- 6.3.10.Geologic Hazards and Geotechnical Investigation -- 6.3.10.1.Seismic Design Basis -- 6.3.10.2.Structural System Selection -- 6.3.11.Building Irregularities -- 6.3.11.1.Plan (Horizontal) Irregularity -- 6.3.11.2.Vertical Irregularity -- 6.3.12.Redundancy Reliability Factor, ρ -- 6.3.13.Seismic Load Combinations -- 6.3.13.1.Vertical Seismic Load, 0.02SDS -- 6.3.13.2.Overstrength Factor Ωo -- 6.3.14.Elements Supporting Discontinuous Walls or Frames -- 6.3.15.Direction of Loading -- 6.3.16.Period Determination -- 6.3.17.Inherent and Accidental Torsion -- 6.3.18.Overturning -- 6.3.19.PΔ Effects --
6.3.20.Drift Determination -- 6.3.21.Deformation Compatibility -- 6.3.22.Seismic Response Modification Coefficient, R -- 6.3.23.Seismic Force Distribution for the Design of Lateral-Load-Resisting System -- 6.3.24.Seismic Loads due to Vertical Ground Motions -- 6.3.25.Seismic Force for the Design of Diaphragms -- 6.3.25.1.Distribution of Seismic Forces for Diaphragm Design -- 6.3.25.2.General Procedure for Diagram Design -- 6.3.25.3.Diaphragm Design Summary: Buildings Assigned to SDC C and Higher -- 6.3.26.Catalog of Seismic Design Requirements -- 6.3.26.1.Buildings in SDC A -- 6.3.26.2.SDC B Buildings -- 6.3.26.3.SDC C Buildings -- 6.3.26.4.SDC D Buildings -- 6.3.26.5.SDC E Buildings -- 6.3.26.6.SDC F Buildings -- 6.3.27.Analysis Procedures -- Preview -- 7.1.AISC 34140 Seismic Provisions, Overview -- 7.1.1.General Requirements -- 7.1.2.Member and Connection Design -- 7.1.3.Moment Frames -- 7.1.4.Stability of Beams and Columns --
7.1.5.Intermediate Moment Frames -- 7.1.6.Special Truss Moment Frames -- 7.1.6.1.Special Concentric Braced Frames -- 7.1.7.Eccentrically Braced Frames -- 7.1.8.Buckling-Restrained Braced Frames -- 7.1.9.Special Plate Shear Walls -- 7.1.10.Composite Structural Steel and Reinforced Concrete Systems -- 7.2.AISC 341-10, Detailed Discussion -- 7.2.1.Moment Frame Systems -- 7.2.1.1.SMF Design -- 7.2.1.2.AISC Prequalified Connections -- 7.2.1.3.Ductile Behavior -- 7.2.1.4.Seismically Compact Sections -- 7.2.1.5.Demand Critical Welds -- 7.2.1.6.Protected Zones -- 7.2.1.7.Panel Zone of Beam-to-Column Connections -- 7.2.2.Moment Frame Systems -- 7.2.2.1.Ordinary Moment Frames -- 7.2.2.2.Intermediate Moment Frames -- 7.2.2.3.Special Moment Frames -- 7.2.2.4.Special Truss Moment Frames -- 7.2.3.Braced-Frame and Shear-Wall Systems -- 7.2.3.1.Ordinary Concentrically Braced Frames -- 7.2.3.2.Special Concentrically Braced Frames -- 7.2.3.3.Eccentrically Braced Frames --
7.2.3.4.Buckling-Restrained Braced Frames -- 7.2.4.Special Plate Shear Walls -- 7.2.5.Composite Systems -- 7.2.5.1.Composite Ordinary Moment Frames -- 7.2.5.2.Composite Intermediate Moment Frames -- 7.2.5.3.Composite Special Moment Frames -- 7.2.5.4.Composite Partially Restrained Moment Frames -- 7.2.5.5.Composite Ordinary Braced Frames -- 7.2.5.6.Composite Special Concentrically Braced Frames -- 7.2.5.7.Composite Eccentrically Braced Frames -- 7.2.5.8.Composite Ordinary Reinforced Concrete Shear Walls with Steel Elements -- 7.2.5.9.Composite Special Reinforced Concrete Shear Walls with Steel Elements -- 7.2.5.10.Composite Steel Plate Shear Walls -- 7.3.Prequalified Seismic Moment Connection -- 7.4.List of Significant Technical Provisions of AISC 341-05/10 -- 7.5.Additional Comments on Seismic Design of Steel Buildings -- 7.5.1.Concentric Braced Frames -- Preview -- 8.1.Social Issues in Seismic Rehabilitation --
8.2.General Steps in Seismic Rehabilitation -- 8.2.1.Initial Considerations -- 8.2.2.Rehabilitation Objective -- 8.2.2.1.Performance Levels -- 8.2.2.2.Seismic Hazard -- 8.2.2.3.Selecting a Rehabilitation Objective -- 8.2.2.4.Rehabilitation Method -- 8.2.2.5.Rehabilitation Strategy -- 8.2.3.Analysis Procedures -- 8.2.4.Verification of Rehabilitation Design -- 8.2.5.Nonstructural Risk Mitigation -- 8.2.5.1.Disabled Access improvements -- 8.2.5.2.Hazardous Material Removal -- 8.2.5.3.Design, Testing and Inspection, and Management Fees -- 8.2.5.4.Historic Preservation Costs -- 8.3.Seismic Rehabilitation of Existing Buildings ASCE/SEI Standard 41-06 -- 8.3.1.Overview of Performance Levels -- 8.3.2.Permitted Design Methods -- 8.3.3.Systematic Rehabilitation -- 8.3.3.1.Determination of Seismic Ground Motions -- 8.3.3.2.Determination of As-Built Conditions -- 8.3.3.3.Primary and Secondary Components --
8.3.3.4.Setting Up Analytical Model and Determination of Design Forces -- 8.3.3.5.Combined Gravity and Seismic Demand -- 8.3.3.6.Component Capacities QCE, QCL and Design Actions -- 8.3.3.7.Capacity versus Demand Comparisons -- 8.3.3.8.Development of Seismic Strengthening Strategies -- 8.3.4.ASCE/SEI 41-06: Design Example -- 8.3.5.Summary -- Preview -- 9.1.Architectural Review of Tall Buildings -- 9.2.Evolution of High-Rise Architecture -- 9.3.Tall Buildings -- 9.3.1.World Trade Center Towers, New York -- 9.3.2.Empire State Building, New York -- 9.3.3.Bank One Center, Indianapolis, Indiana -- 9.3.4.MTA Headquarters, Los Angeles, California -- 9.3.5.AT&T Building, New York City, New York -- 9.3.6.Miglin-Beitler Tower, Chicago, Illinois -- 9.3.7.One Detroit Center, Detroit, Michigan -- 9.3.8.Jin Mao Tower, Shanghai, China -- 9.3.9.Petronas Towers, Malaysia -- 9.3.10.One-Ninety-One Peachtree, Atlanta, Georgia -- 9.3.11.Nations Bank Plaza, Atlanta, Georgia --
9.3.12.U.S. Bank Tower First Interstate World Center, Library Square, Los Angeles, California -- 9.3.13.2Ist Century Tower, China -- 9.3.14.Torre Mayor Office Building, Mexico City -- 9.3.15.Fox Plaza, Los Angeles, California -- 9.3.16.Figueroa at Wilshire, Los Angeles, California -- 9.3.17.California Plaza, Los Angeles, California -- 9.3.18.Citicorp Tower, Los Angeles, California -- 9.3.19.Taipei Financial Center, Taiwan -- 9.3.20.Caja Madrid Tower, Spain -- 9.3.21.Federation Tower, Moscow, Russia Tower A -- 9.3.22.The New York Times Building, New York -- 9.3.23.Pacific First Center, Seattle, Washington -- 9.3.24.Gate Way Center -- 9.3.25.Two Union Square, Seattle, Washington -- 9.3.26.InterFirst Plaza, Dallas, Texas -- 9.3.27.Bank of China Tower, Hong Kong -- 9.3.28.Bank of Southwest Tower, Houston, Texas -- 9.3.29.First City Tower, Houston, Texas -- 9.3.30.America Tower, Houston, Texas -- 9.3.31.The Bow Tower, Calgary, Alberta, Canada --
9.3.32.Shard Tower, London, United Kingdom -- 9.3.33.Hearst Tower, New York -- 9.3.34.Standard Oil of Indiana Building, Chicago, Illinois -- 9.3.35.The Renaissance Project, San Diego, California -- 9.3.36.Tokyo City Hall, Tower 1, Japan -- 9.3.37.Bell Atlantic Tower, Philadelphia, Pennsylvania -- 9.3.38.Norwest Center, Minneapolis, Minnesota -- 9.3.39.First Bank Place, Minneapolis, Minnesota -- 9.3.40.Allied Bank Tower, Dallas, Texas -- 9.3.41.Future of Tall Buildings -- 9.4.Building Motion Perception -- 9.5.Structural Damping -- 9.6.Performance-Based Design -- 9.6.1.Alternative Design Criteria: 2008 LATBSDC -- 9.6.2.Recommended Administrative Bulletin on the Seismic Design and Review of Tall Buildings Using Nonprescriptive Procedures AB-083 -- 9.6.3.Pushover Analysis -- 9.6.4.Concluding, Remarks -- 9.7.Preliminary Analysis Techniques -- 9.7.1.Portal Method -- 9.7.2.Cantilever Method -- 9.7.3.Design Examples: Portal and Cantilever Methods --
9.7.4.Framed Tubes -- 9.7.5.Vierendeel Truss -- 9.7.6.Preliminary Wind Loads -- 9.7.7.Preliminary Seismic Loads -- 9.7.7.1.Building Height, Hn = 160 ft -- 9.7.7.2.Buildings Taller than 160 ft -- 9.7.8.Differential Shortening of Columns -- 9.7.8.1.Simplified Method of Calculating Δz, Axial Shortening of Columns -- 9.7.8.2.Derivation of Simplified Expression for Δz -- 9.7.8.3.Column Length Corrections, Δc -- 9.7.8.4.Column Shortening Verification during Construction -- 9.7.9.Unit Weight of Structural Steel for Preliminary Estimate -- 9.7.9.1.Concept of Premium for Height -- Preview
Notes Formerly CIP. Uk
Bibliography Includes bibliographical references and index
Subject Tall buildings -- Design and construction.
Structural analysis (Engineering)
LC no. 2011022828
ISBN 9781439850893
1439850895