Description |
1 online resource (xviii, 308 pages) : illustrations |
Series |
Springer Laboratory |
|
Springer laboratory.
|
Contents |
Note continued: References -- 4.1. introduction -- 4.2. Driving Forces for Particle Deformation -- 4.2.1. Wet Sintering -- 4.2.2. Dry Sintering -- 4.2.3. Capillary Deformation -- 4.2.4. Capillary Rings -- 4.2.5. Sheetz Deformation -- 4.3. Particle Deformations -- 4.3.1. Hertz Theory [--] Elastic Spheres with an Applied Load -- 4.3.2. JKR Theory Elastic Spheres with an Applied Load and Surface Tension -- 4.3.3. Frenkel Theory [--] Viscous Spheres with Surface Tension -- 4.3.4. Viscoelastic Particles -- 4.4. Problem with Particle[-]Particle Approach -- 4.4.1. Routh and Russel Film Deformation Model -- 4.5. Deformation Maps -- 4.5.1. Wet Sintering -- 4.5.2. Capillary Deformation -- 4.5.3. Dry Sintering -- 4.5.4. Receding Water Front -- 4.5.5. Use of the Deformation Maps -- 4.6. Dimensional Argument for Figure 4.6 -- 4.6.1. Wet Sintering -- 4.6.2. Capillary Deformation -- 4.6.3. Dry Sintering -- 4.6.4. Sheetz Deformation -- 4.7. Effect of Temperature -- 4.8. Effect of Particle Size -- 4.9. Experimental Evidence for Deformation Mechanisms -- 4.9.1. Inferring Deformation Mechanisms from Water Distributions -- 4.9.2. Determination of Deformation Mechanisms Using an MFFT Bar and Optical Techniques -- 4.9.3. Microscopy of Particle Deformation -- 4.9.4. Scattering Techniques -- 4.9.5. Detection of Skin Formation -- References -- 5.1. Essential Polymer Physics -- 5.1.1. Interface Width at Polymer-Polymer Interfaces -- 5.1.2. Polymer Reptation -- 5.2. Development of Mechanical Strength and Toughness -- 5.2.1. Dependence on the Density of Chains Crossing the Interface -- 5.2.2. Dependence on Interdiffusion Distance, A -- 5.3. Factors that Influence Diffusivity -- 5.3.1. Molecular Weight and Chain Branching -- 5.3.2. Temperature Dependence -- 5.3.3. Influence of Hard Particles -- 5.3.4. Latex Particle Size |
|
Note continued: 5.3.5. Particle Structure and Hydrophilic Membranes -- 5.4. Faster Diffusion with Coalescing Aids -- 5.5. Simultaneous Crosslinking and Diffusion: Competing Effects -- References -- 6.1. Introduction -- 6.1.1. Where Can Surfactant Go in a Dried Film? -- 6.1.2. Effect of Non-Uniform Surfactant Distributions -- 6.1.3. Mechanisms of Surfactant Transport -- 6.2. Adsorption Isotherms -- 6.3. Modelling of Surfactant Distribution during the Drying Stage -- 6.4. Effect of Surfactant's Vertical Distribution on Film Topography -- 6.5. Experimental Evidence for Surfactant Locations -- 6.5.1. Interfaces with Air and Substrates -- 6.5.2. Surfactant in the Bulk of the Film -- 6.5.3. Depth Profiling and Mapping -- 6.6. Reactive Surfactants -- 6.6.1. Reactive Surfactant Chemistry -- 6.6.2. Effect of Surfmers on Film Properties -- 6.7. Summary -- References -- 7.1. Introduction -- 7.1.1. Properties of Nanocomposites -- 7.1.2. Applications of Colloidal Nanocomposites -- 7.2. Types of Hybrid Particles -- 7.2.1. Polymer-Polymer Hybrid Particles -- 7.2.2. Inorganic and Polymer Nanocomposite Particles -- 7.2.3. 'Self-Assembly' of Nanocomposite Particles by Precipitation or Flocculation of Pre-Formed Nanoparticles -- 7.3. Colloidal Particle Deposition and Assembly Methods -- 7.3.1. Deposition Methods -- 7.3.2. Vertical Deposition -- 7.3.3. Surface Pattern-Assisted Deposition -- 7.3.4. Long-Range Order from Self-Assembled Core-Shell Particles -- 7.4. Colloidal Nanocomposites from Particle Blends -- 7.4.1. Advantages of Particle Blends -- 7.4.2. Dispersion of Nanoparticles -- 7.4.3. Long-Range Order in Particle Blends -- 7.5. Three Lessons about the Properties of Waterborne Nanocomposite Films -- 7.5.1. Lesson One -- 7.5.2. Lesson Two -- 7.5.3. Lesson Three -- References -- 8.1. Film Formation from Anisotropic Particles |
|
Note continued: 8.2. Assembly of Particles over Large Length Scales -- 8.3. Technique Development -- 8.4. Nanocomposite Structure and Property Correlations -- 8.5. Interdiffusion of Polymers in Multiphase Particles -- 8.6. Templating Film Topography -- 8.7. Resolving the Film Formation Dilemma -- References -- A. Derivation of Creeping Flow and the Result for Low Reynolds Number Flow Around a Sphere -- A.1. Derivation of Creeping Flow -- A.2. Scaling of the Navier-Stokes Equation -- A.3. Stokes Flow -- A.4. Sedimentation -- B. GARField Profiling Techniques and Experimental Parameters -- References -- C. Terminology of Humidity and an Expression for Evaporation Rate -- C.1. Humidity -- C.2. Relative Humidity -- C.3. Dry Bulb Temperature -- C.4. Wet Bulb Temperature -- C.5. Specific Volume -- C.6. Enthalpy of Air -- C.7. Psychrometric Chart -- C.8. Dew Point -- C.9. Relating Humidity to Partial Pressure -- Example 1 -- Example 2 -- Example 3 -- Example 4 -- Example 5 -- C.10. Evaporation Rate -- References -- D. Fracture Mechanics: Terminology and Tests -- D.1. Fracture Toughness, KIC -- D.2. Plastic Zone Size at the Crack Tip, ry -- D.3. Critical Energy Release Rate, Gc -- D.4. Fracture Strength -- D.5. Fracture Energy -- References |
Summary |
Polymer colloids, better known as latex, are dispersions of sub-micrometer polymer particles in water. The book's primary focus is on film formation, the process by which latex can be transformed into films, coatings and adhesives. Following an introductory chapter, the book first reviews and compares the main experimental techniques used in the study and analysis of latex film formation. Each of the three main stages of film formation - evaporation of water, particle deformation, and particle coalescence - are considered separately, introducing relevant theoretical descriptions. More recent a |
Analysis |
materialen |
|
materials |
|
oppervlakten |
|
surfaces |
|
grensvlak |
|
interface |
|
biofysica |
|
biophysics |
|
polymeren |
|
polymers |
|
materiaalkunde |
|
materials science |
|
nanotechnologie |
|
nanotechnology |
|
Biophysics (General) |
|
Biofysica (algemeen) |
Bibliography |
Includes bibliographical references and index |
Notes |
English |
|
Print version record |
In |
Springer eBooks |
Subject |
Latex -- Surfaces
|
|
Latex -- Properties
|
|
Thin films.
|
|
Polymer colloids.
|
|
Science.
|
|
Science
|
|
sciences (philosophy)
|
|
science (modern discipline)
|
|
SCIENCE -- Chemistry -- Organic.
|
|
Chimie.
|
|
Science des matériaux.
|
|
Science
|
|
Polymer colloids
|
|
Thin films
|
Form |
Electronic book
|
Author |
Routh, Alexander Francis, 1972-
|
LC no. |
2009940449 |
ISBN |
9789048128457 |
|
9048128455 |
|
1282833340 |
|
9781282833340 |
|
9786612833342 |
|
6612833343 |
|