Limit search to available items
Book Cover
Author Qian, Shen-En.

Title Hyperspectral satellites and system design / Shen-En Qian
Published [Place of publication not identified] : CRC Press, 2020


Description 1 online resource (1 volume) : illustrations (black and white)
Contents Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biography -- Chapter 1: Introduction to Hyperspectral Satellites -- 1.1. Spaceborne Spectroscopy and Imaging -- 1.2. Hyperspectral Imaging Approaches -- 1.2.1. Dispersive Elements Based Approach -- Whiskbroom Mode -- Pushbroom Mode -- 1.2.2. Spectral Filters Based Approach -- Linear Variable Filters -- On-Chip Stepped Fabry-Pérot Filters -- Electronically Tunable Filters -- 1.2.3. Snapshot Hyperspectral Imagers -- Multi-Aperture Filtered Camera Coded Aperture Snapshot Spectral Imager -- Image Mapping Spectrometry -- Snapshot Hyperspectral Imaging Fourier Transform Spectrometer -- On-Chip Fabry-Pérot Filters -- 1.3. Hyperspectral Imaging from Aircraft to Spacecraft -- 1.3.1. Scientific Rationale for Hyperspectral Remote Sensing -- 1.3.2. History of Development of Airborne Hyperspectral Imagers -- First Airborne Hyperspectral Imager-AIS -- Airborne Imaging Spectrometer Development Between the 80's and 90's -- Early Imaging Spectrometer Development in Canada
1.3.3. Planned NASA Orbiting Imaging Spectrometers in the 1990s -- 1.3.4. Two Major Airborne Hyperspectral Sensor Developments Since the Beginning -- Difference Between Airborne and Spaceborne Hyperspectral Imaging -- AVIRIS and Its Next Generation -- CASI and Its Spectrally and Spatially Extended Siblings -- References -- Chapter 2: Overview of Hyperspectral Sensors on Orbits -- 2.1. Spaceborne Hyperspectral Sensors at a Glance -- 2.2. Ultraviolet and Visible Imagers and Spectrographic Imagers -- 2.3. Hyperspectral Imager (HSI) for the LEWIS Mission
2.4. Moderate Resolution Imaging Spectroradiometer on Terra and Aqua Satellites -- 2.5. Hyperion Onboard EO-1 Mission -- 2.6. Compact High-Resolution Imaging Spectrometer (CHRIS) on PROBA Satellite -- 2.7. Medium-Resolution Imaging Spectrometer Onboard ESA's ENVISAT -- 2.8. Visible and Infrared Thermal Imaging Spectrometer for Rosetta, Venus-Express, and NASA Dawn Planetary Missions -- 2.9. Compact Reconnaissance Imaging Spectrometer for Mars -- 2.10. Moon Mineralogy Mapper -- 2.11. Fourier Transform Hyperspectral Imager Onboard Chinese Environment Protection Satellite HJ-1A
2.12. Hyperspectral Imager Onboard Indian Mini Satellite-1 -- 2.13. Advanced Responsive Tactically Effective Military Imaging Spectrometer Onboard TacSat-3 -- 2.14. Hyperspectral Imager for the Coastal Ocean Onboard the International Space Station -- 2.15. Visible and Near-Infrared Imaging Spectrometer Aboard Chang'E 3 Spacecraft -- 2.16. Ocean and Land Color Imager (OLCI) on Sentinel-3A -- 2.17. Miniature High-Resolution Imaging Spectrometer on GHGSat-D -- 2.18. Aalto-1 Spectral Imager on a 3U Nanosatellite -- 2.19. DLR Earth Sensing Imaging Spectrometer on the International Space Station
Summary Hyperspectral Satellites and System Design is the first book on this subject. It provides a systematic analysis and detailed design of the entire development process of hyperspectral satellites. Derived from the author's 25-year firsthand experience as a technical lead of space missions at the Canadian Space Agency, the book offers engineers, scientists, and decision-makers detailed knowledge and guidelines on hyperspectral satellite system design, trade-offs, performance modeling and simulation, optimization from component to system level, subsystem design, and implementation strategies. This information will help reduce the risk, shorten the development period, and lower the cost of hyperspectral satellite missions. This bookis a must-have reference for professionals in developing hyperspectral satellites and data applications. It is also an excellent introductory book for early practitioners and students who want to learn more about hyperspectral satellites and their applications
Notes Dr. Shen-En Qian is a senior scientist, scientific authority of government contracts and technical lead of space missions at the Canadian Space Agency. He has written three books on optical satellites and their signal processing, authored chapters in five others and edited a book on optical payloads for space missions. He has published 120 papers. He holds 35 granted patents in U.S., Europe, Canada and Australia developed in Canadian government laboratory. He received IEEE Canada Outstanding Engineer Award and Silver Medal in 2019
Print version record
Subject Artificial satellites.
Artificial satellites -- Design and construction
Hyperspectral imaging.
artificial satellites.
TECHNOLOGY -- Engineering -- Civil.
TECHNOLOGY -- Engineering -- Mechanical.
Artificial satellites
Artificial satellites -- Design and construction
Hyperspectral imaging
Form Electronic book
ISBN 9780429266201