Limit search to available items
Book Cover
E-book
Author Santhanagopalan, Shriram, author

Title Design and analysis of large lithium-Ion battery systems / Shriram Santhanagopalan, Kandler Smith, Jeremy Neubauer, Gi-Heon Kim, Matthew Keyser, Ahmad Pesaran
Published Boston : Artech House, 2015

Copies

Description 1 online resource (241 pages)
Series Power engineering
Artech House power engineering series.
Contents Preface; Chapter 1 Types of Batteries; 1.1 Lead Acid Batteries; 1.2 Nickel-Based Batteries; 1.3 Sodium Beta Batteries; 1.3.1 Sodium Sulfur Batteries; 1.3.2 Metal Chloride Batteries; 1.3.3 Challenges and Future Work; 1.4 Flow Batteries; 1.4.1 Redox Flow Batteries; 1.4.2 Hybrid-Flow Batteries; 1.4.3 Challenges and Future Work; 1.5 Li-Ion Batteries; 1.5.1 Lithium-Ion Cathodes; 1.5.2 Lithium-Ion Anodes; 1.5.3 Li-Ion Electrolytes; 1.5.4 Li-Ion Challenges and Future Work; 1.6 Lithium-Sulfur Batteries; 1.6.1 Lithium-Sulfur Cathodes; 1.6.2 Lithium-Sulfur Anode
1.6.3 Challenges and Future Work1.7 Metal-Air Batteries; 1.7.1 Zinc-Air Batteries; 1.7.2 Lithium-Air Batteries; 1.7.3 Challenges and Future Work; 1.8 Emerging Chemistries; 1.8.1 Sodium-Ion Batteries; 1.8.2 Liquid Metal; Chapter 2 Electrical Performance; 2.1 Thermodynamics Inside a Battery; 2.2 Assembling a Li-Ion Cell; 2.3 Voltage Dynamics during Charge/Discharge; 2.4 Circuit Diagram for a Cell; 2.5 Electrochemical Models for Cell Design; 2.5.1 Charge Transport within the Electrode by Electrons; 2.5.2 Charge Transport in the Electrolyte by Ions
2.5.3 Charge Transfer between the Electrodes and the Electrolyte2.5.4 Distribution of Ions; 2.6 Electrical Characterization of Li-Io Batteries; 2.6.1 Capacity Measurement; 2.6.2 Power Measurement; 2.6.3 Component Characterization; References; Chapter 3 Thermal Behavior; 3.1 Heat Generation in a Battery; 3.1.1 Heat Generation from Joule Heating; 3.1.2 Heat Generation from Electrode Reactions; 3.1.3 Entropic Heat Generation; 3.2 Experimental Measurement of Thermal Parameters; 3.2.1 Isothermal Battery Calorimeters; 3.2.2 Basic IBC Operation; 3.2.3 Typical Applications for an IBC
3.3 Differential Scanning Calorimeters3.3.1 Differential Scanning Calorimeters and Batteries; 3.4 Infrared Imaging; 3.4.1 Origin of Thermal Energy; 3.4.2 Calibration and Error; 3.4.3 Imaging Battery Systems; 3.5 Desired Attributes of a Thermal Management System; 3.5.1 Designing a Battery Thermal Management System; 3.5.2 Optimization; 3.6 Conclusions; References; Chapter 4 Battery Life; 4.1 Overview; 4.1.1 Physics; 4.1.2 Calendar Life Versus Cycle Life; 4.1.3 Regions of Performance Fade; 4.1.4 End of Life; 4.1.5 Extending Cell Life Prediction to Pack Level
4.1.6 Fade Mechanisms in Electrochemical Cells4.1.7 Common Degradation Mechanisms in Li-Ion Cells; 4.2 Modeling ; 4.2.1 Physics-Based; 4.2.2 Semiempirical Models; 4.3 Testing ; 4.3.1 Screening/Benchmarking Tests; 4.3.2 Design of Experiments; 4.3.3 RPTs; 4.3.4 Other Diagnostic Tests; References; Chapter 5 Battery Safety; 5.1 Safety Concerns in Li-Ion Batteries; 5.1.1 Electrical Failure; 5.1.2 Thermal Failure; 5.1.3 Electrochemical Failure; 5.1.4 Mechanical Failure; 5.1.5 Chemical Failure; 5.2 Modeling Insights on Li-Ion Battery Safety; 5.2.1 Challenges with Localized Failure
Summary This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the fie
Notes 5.2.2 Effectiveness of Protective Device in Multicell Packs
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Lithium ion batteries.
Storage batteries -- Design and construction
TECHNOLOGY & ENGINEERING -- Mechanical.
Lithium ion batteries
Form Electronic book
Author Kim, Gi-Heon, author
Keyers, Matthew, author
Pesaran, Ahmad A., author.
Smith, Kandler, author
Neubauer, Jeremy, author
ISBN 9781608077144
1608077144
9781523117055
1523117052