Limit search to available items
Book Cover
E-book
Author Hallock, Harold Louis, 1951- author.

Title ACS without an attitude / Harold L. Hallock, Gary Welter, David G. Simpson, Christopher Rouff
Published London, United Kingdom : Springer, 2017

Copies

Description 1 online resource (xvii, 279 pages) : illustrations
Series NASA monographs in systems and software engineering, 1860-0131
NASA monographs in systems and software engineering.
Contents Preface; Contents; Acronyms; 1 Attitude Conventions and Definitions; 1.1 Definition of the Inertial Reference Frame; 1.2 Defining Attitude via Euler Angles (Right Ascension, Declination, and Roll); 1.3 Defining Attitude via Euler Angles (Roll, Pitch, and Yaw); 1.4 Defining Attitude via the Direction Cosine Matrix; 1.5 Defining Attitude via the Eigenvector and Rotation Angle; 1.6 Defining Attitude via Quarternions; 1.7 Attitude Format Applications; 2 General Orbit Background; 2.1 Historical Perspective; 2.2 Orbital Shapes; 2.3 Specifying the Orbit's Orientation in Inertial Space
2.4 The Location of the Spacecraft in the Orbit; 2.5 Keplerian Element Types; 2.6 Orbit Perturbations -- Oblate Earth; 2.7 Orbit Perturbations -- Aerodynamic Drag; 2.8 Orbit Perturbations -- Solar Radiation Pressure; 2.9 Orbit Perturbations -- Orbit Maneuvers with Thrusters; 3 Angular Momentum and Torque; 3.1 Historical Digression; 3.2 Translational Motion; 3.3 Rotational Motion; 3.4 Motion of the Center of Mass Versus Motion About the Center of Mass; 3.5 How the Moment of Inertia Tensor Describes the Object's Nature; 3.6 Types of Torque-Free Rotational Motion
3.7 How Torques Can Influence an Object's Rotational Motion; 3.8 Attitude Control Torques; 3.9 Environmental Torques; 4 Attitude Measurement Sensors; 4.1 Sun Sensors; 4.2 Earth Sensors; 4.3 Magnetometers; 4.4 Star Sensors; 4.5 Gyros; 5 Attitude Actuators; 5.1 Reaction Wheels; 5.2 Magnetic Torquer Bars (MTBs); 5.3 Thrusters; 6 Reference Models; 6.1 Modeling the Earth's Gravitational Field; 6.2 Modeling the Spacecraft's Ephemeris; 6.3 Modeling Solar, Lunar, and Planetary Ephemerides; 6.4 Modeling the Geomagnetic Field; 6.5 Star Catalogs; 6.6 Velocity Aberration; 6.7 Parallax
6.8 Stellar Magnitude; 6.9 Star Catalog Examples; 7 Onboard Attitude Determination; 7.1 Attitude Propagation with Gyroscope Data; 7.2 Reference Attitude; 7.3 Minimum Data Attitude Determination; 7.4 Batch Attitude Determination with Vector Observations; 7.5 Attitude Uncertainty: The Covariance Matrix; 7.6 Combining Multiple Attitude Solutions; 7.7 Combining an Attitude Solution with a Vector Measurement; 7.8 Measurement Propagation and De-Weighting; 7.9 Recursive Attitude Estimation; 7.10 Recursive Attitude Plus Gyro Bias Estimation; 7.11 The Kalman Filter for Recursive Least Squares
7.12 Synopsis; 7.13 Mathematics to English Translation of Kalman Filtering; 8 Spacecraft State Estimation More Broadly; 8.1 Attitude-Related Least Squares Problems; 8.1.1 Star Tracker Relative Alignments; 8.1.2 Star Tracker Internal Calibrations; 8.1.3 Gyroscope Calibration; 8.1.4 Sun Sensor Calibration; 8.1.5 Magnetometer Calibration; 8.1.6 Wavefront Calibration; 8.2 General Issues; 8.2.1 Observability; 8.2.2 State Vector Selection; 8.2.3 Observation Model; 8.2.4 Least Squares Filters; 9 Onboard Orbit Computations; 9.1 CGRO Onboard Orbit Models; 9.2 HST Onboard Orbit Models
Summary This book de-emphasizes the formal mathematical description of spacecraft on-board attitude and orbit applications in favor of a more qualitative, concept-oriented presentation of these topics. The information presented in this book was originally given as a set of lectures in 1999 and 2000 instigated by a NASA Flight Software Branch Chief at Goddard Space Flight Center. The Branch Chief later suggested this book. It provides an approachable insight into the area and is not intended as an essential reference work. ACS Without an Attitude is intended for programmers and testers new to the field who are seeking a commonsense understanding of the subject matter they are coding and testing in the hope that they will reduce their risk of introducing or missing the key software bug that causes an abrupt termination in their spacecraft's mission. In addition, the book will provide managers and others working with spacecraft with a basic understanding of this subject
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (SpringerLink, viewed May 11, 2017)
Subject Space vehicles -- Attitude control systems.
Artificial satellites -- Attitude control systems.
Aerospace & aviation technology.
Expert systems -- knowledge-based systems.
Software Engineering.
TECHNOLOGY & ENGINEERING -- Engineering (General)
Artificial satellites -- Attitude control systems
Space vehicles -- Attitude control systems
Form Electronic book
Author Welter, Gary L., author.
Simpson, David G., author.
Rouff, Chris, 1960- author.
ISBN 9781447173250
1447173252