Limit search to available items
Your search query has been changed... Tried: (architecture and solar and radiation and oceania and ha) no results found... Tried: (architecture or solar or radiation or oceania)
32000 results found. Sorted by relevance .
Book Cover
Book

Title Responses of plant to UV-B radiation / edited by Jelte Rozema, Yiannis Manetas, and Lars-Olof Björn
Published Boston : Kluwer Academic Publishers, 2001

Copies

Location Call no. Vol. Availability
 W'PONDS  571.4562 Roz/Rop  AVAILABLE
Description 1 volume
Series Advances in vegetation science ; v. 18
Advances in vegetation science ; v. 18
Contents Machine derived contents note: General. 1. Is provitamin D a UV-B photoreceptor in plants?; L.O. Bjṟn, T. Wang. 2. (Poly)phenolic compounds in pollen and spores of plants as indicators of solar UV-B: a new proxy for the reconstruction of past solar UV-B; J. Rozema, et al. 3. The direct effects of UV-B radiation (290-315 nm) on plant litter decomposing at four European field sites; S.A. Moody, et al. Terrestrial Plants and Terrestrial Ecosystems. 4. Enhanced UV-B affects biomass production in a dune grassland ecosystem; A.M.C. Oudejans, et al. 5. The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis; M. Novak, et al. 6. Growth and flower properties and demography of Anthemis arvensis under enhanced UV-B radiation; Y. Petropoulou, et al. Arctic and Antarctic Plants and Ecosystems. 7. Short-term impacts of enhanced UV-B radiation on photo-assimilate allocation and metabolism: a possible interpretation for time dependent inhibition of growth; D. Gwynn-Jones. 8. Field research on the impact of UV-B on Antarctic terrestrial vegetation; A.H.L. Huiskes, et al. 9. The effects of altered levels of UV-B radiation on an Antarctic grass and lichen; D. Lud, et al. 10. Consequences of depletion of stratospheric ozone for terrestrial antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation in a controlled environment; J. Rozema, et al. Reduction of ambient UV-B radiation does not affect growth but may change the flowering pattern of Rosmarinus officinalis L.; G. Grammatikopoulos, et al. Interactions of UV-B Radiation with other factors of terrestrial environments. 12. The importance of UV-B induced changes in canopy architecture for UV-B and PAR penetration and absorption; G. Deckmyn, et al. 13. The response of Vivia faba to enhanced UV-B under low and high PAR levels; B.M. Meijkamp, et al. 14. Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants; E.M. Bolink, et al. 15. Nutrient availability influences UV-B sensitivity of Plantago lanceolata; M. Tosserams, et al. 16. Increased solar UV-B radiation reduces infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants; J. van de Staaij, et al. 17. Combined effects of enhanced UV-B radiation and additional nutrients on growth of two Mediterranean plant species; E. Levizou, Y. Manetas. 18. Effects of UV-B radiation and additional irrigation on the Mediterranean evergreen sclerophyll Ceratonia silique L. under field conditions; A. Kyparissis, et al. 19. Combined effects of CO2 concentration and enhanced UV-B radiation on Faba bean; M. Tosserams, et al. 20. Enhanced UV-B radiation, artificial wounding and leaf chemical defensive potential in Phlomis fruticosa L.; E. Levizou, Y. Manetas. Aquatic Plants and Aquatic ecosystems. 21. Responses of algae and cyanobacteria to solar UV-B; R.P. Sinha, et al. 22. UV effects on a charophycean algae, Chara aspera, in the context of evolution of land plants; N. de Bakker, et al. 23. Responses of phytoplankton to UV-B radiation studied in an arctic freshwater lake (Brandal Laguna, Spitsbergen); E. Van Donk, et al. 24. The photo-protective role of humus-DOC for Daphnia and Selenastrum; D.O. Hessen, P. Fr̆v̜. Index
Bibliography Includes bibliographical references
Subject Plants -- Effect of ultraviolet radiation on.
Author Björn, Lars Olof, 1936-
Rozema, J.
Manetas, Giannēs, 1947-
LC no. 2001029000
ISBN 0792360621 alkaline paper