Limit search to available items
380 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Seyedi, Mir Hojjat, author

Title A novel intrabody communication transceiver for biomedical applications / Mir Hojjat Seyedi, Daniel Lai
Published Singapore : Springer, [2016]
©2017

Copies

Description 1 online resource (xxiii, 108 pages) : illustrations (some color)
Series Series in bioengineering
Series in bioengineering.
Contents Acknowledgments; Contents; List of Publications; List of Figures; List of Tables; List of Symbols; Abstract; 1 Introduction; 1.1 Human Body Communication; 1.2 Objectives; 1.3 Organization of the Book; 2 Literature Review; 2.1 IBC Specifications and Methods; 2.2 Electrical Properties of the Human Tissues; 2.3 Modeling Methods of Body Tissues; 2.3.1 Human Tissues Parametric Model; 2.3.2 Body Channel Circuit Model; 2.3.3 Finite Element Model (FEM); 2.3.4 Circuit-Coupled FEM Model; 2.3.5 FDTD Model; 2.3.6 Theoretical Electromagnetic Model; 2.4 IBC Transceiver Design; 2.5 IBC Challenges
2.6 Summary3 Experimental Methodology; 3.1 Pre-measurement Preparation and Safety; 3.2 Measurement Setup; 3.2.1 On-Body Electrodes; 3.2.2 Human Body Channel; 3.2.3 Electronic Equipment; 3.3 Summary; 4 Empirical Measurement; 4.1 Influence of Joint-Segments; 4.1.1 Two-Electrode Configuration; 4.1.2 Four-Electrode Configuration; 4.1.3 Discussion; 4.2 Effect of Body Posture on IBC; 4.2.1 Discussion; 4.3 Arm Posture and Effect of Channel Length; 4.3.1 Discussion; 4.4 Environmental Effects on IBC; 4.4.1 Results and Discussion; 4.5 Summary; 5 Body Channel Modeling
5.1 Background on IBC Channel Models5.2 Methods; 5.2.1 Anatomy of the Human Arm; 5.2.2 Limb-Joint Circuit Model; 5.3 Measurement and Simulation; 5.3.1 Empirical Measurement; 5.3.2 Circuit Model Simulation; 5.4 Results; 5.5 Discussion; 5.6 Summary and Conclusion; 6 IBC System Design; 6.1 IBC Hardware Overview; 6.2 High Frequency Pulse Transmission; 6.2.1 Pulse Duty Cycle Effect on IBC; 6.3 IBC Hardware Architecture; 6.3.1 Transmitter Unit; 6.3.2 Analog Front-End (AFE) for Receiver; 6.3.3 Receiver Unit; 6.4 Measurement Results and Discussion; 6.5 Summary and Conclusion; Appendix RTL Schematic
Summary This monograph explores Intrabody communication (IBC) as a novel non-RF wireless data communication technique using the human body itself as the communication channel or transmission medium. In particular, the book investigates Intrabody Communication considering limb joint effects within the transmission frequency range 0.3-200 MHz. Based on in-vivo experiments which determine the effects of size, situations, and locations of joints on the IBC, the book proposes a new IBC circuit model explaining elbow joint effects. This model not only takes the limb joint effects of the body into account but also considers the influence of measurement equipment in higher frequency band thus predicting signal attenuation behavior over wider frequency ranges. Finally, this work proposes transmitter and receiver architectures for intrabody communication. A carrier-free scheme based on impulse radio for the IBC is implemented on a FPGA
Bibliography Includes bibliographical references
Notes Online resource; title from PDF title page (SpringerLink, viewed November 21, 2016)
Subject Biomedical engineering.
Wireless communication systems.
Biomedical Technology
Biomedical Engineering
biomedical engineering.
HEALTH & FITNESS -- Holism.
HEALTH & FITNESS -- Reference.
MEDICAL -- Alternative Medicine.
MEDICAL -- Atlases.
MEDICAL -- Essays.
MEDICAL -- Family & General Practice.
MEDICAL -- Holistic Medicine.
MEDICAL -- Osteopathy.
Biomedical engineering
Wireless communication systems
Form Electronic book
Author Lai, Daniel T. H., author.
ISBN 9789811028243
9811028249