Limit search to available items
5 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Synthesis and applications of copolymers / edited By Andanandam Parthiban, Institute of Chemical and Engineering Sciences, Agency for Science, Jurong Island, Singapore
Published Hoboken, New Jersey : Wiley, [2014]

Copies

Description 1 online resource
Contents Machine generated contents note: SECTION I SYNTHESIS OF COPOLYMERS -- 1. Trends in Synthetic Strategies for Making (CO)Polymers / Anbanandam Parthiban -- 1.1. Background and Introduction -- 1.2. Significance of Control Over Arrangement of Monomers in Copolymers -- 1.3. Chain-Growth Condensation Polymerization -- 1.3.1. Sequential Self-Repetitive Reaction (SSRR) -- 1.3.2. Poly(phenylene Oxide)s by Chain-Growth Condensation Polymerization -- 1.3.3. Hydroxybenzoic Acids as AA' Type Monomer in Nucleophilic Aliphatic Substitution Polymerization -- 1.4. Sequence-Controlled Polymerization -- 1.4.1. Sequence-Controlled Copolymers of N-Substituted Maleimides -- 1.4.2. Alternating Copolymers by Ring-Opening Polymerization -- 1.4.3. Selective Radical Addition Assisted by a Template -- 1.4.4. Alternating AB-Type Sequence-Controlled Polymers -- 1.4.5. Metal-Templated ABA Sequence Polymerization -- 1.4.6. Sequence-Controlled Vinyl Copolymers -- 1.4.7. Sequence-Regulated Polymerization Induced by Dual-Functional Template -- 1.5. Processing of Thermoset Polymers: Dynamic Bond Forming Processes and Self-Healing Materials -- 1.5.1. Plasticity of Networked Polymers Induced by Light -- 1.5.2. Radically Exchangeable Covalent Bonds -- 1.5.3. Self-Repairing Polyurethane Networks -- 1.5.4. Temperature-Induced Self-Healing in Polymers -- 1.5.5. Diels-Alder Chemistry at Room Temperature -- 1.5.6. Trithiocarbonate-Centered Responsive Gels -- 1.5.7. Shuffling of Trithiocarbonate Units Induced by Light -- 1.5.8. Processable Organic Networks -- 1.6. Miscellaneous Developments -- 1.6.1. Atom Transfer Radical Polymerization (ATRP) Promoted by Unimolecular Ligand-Initiator Dual-Functional Systems (ULIS) -- 1.6.2. Unsymmetrical Ion-Pair Comonomers and Polymers -- 1.6.3. Imidazole-Derived Zwitterionic Polymers -- 1.6.4. Post-Modification of Polymers Bearing Reactive Pendant Groups -- 1.7. Conclusion -- References -- 2. Functional Polyolefins from the Coordination Copolymerization of Vinyl Monomers / Joao A.S. Bomfim -- 2.1. Molecular Aspects of Olefin Coordination to Metals -- 2.2. Fundamentals of Homopolymerization of Alkenes -- 2.3. Copolymerization of Ethene and other Alkenes -- 2.4. Copolymerization of Alkenes and Carbon Monoxide -- 2.5. Copolymerization of Alkenes and Polar Vinyl Monomers -- 2.5.1. Migratory Insertion Polymerization -- 2.5.2. Polymerization via a Dual Radical/Migratory Insertion Pathway -- 2.5.3. Coordinative Group Transfer Polymerization -- 2.6. Copolymerization of Polar Vinyl Monomers and Carbon Monoxide -- 2.7. Why are Phosphine -- Sulfonate Ligands so Special? -- 2.8. Telechelic and End-Capped Macromolecules -- 2.9. On the Use of Chemoinformatics for a More Rapid Development of the Field -- 2.10. Conclusion and Outlook -- References -- 3. General Aspects of Copolymerization / Alex Van Herk -- 3.1. Copolymerization in Chain Reactions -- 3.1.1. Derivation of the Copolymerization Equation -- 3.1.2. Types of Copolymers -- 3.1.3. Polymerization Rates in Copolymerizations -- 3.2. Measuring Copolymerization Parameters -- 3.3. Influence of Reaction Conditions -- 3.4. Short-Chain Effects in Copolymerization -- 3.5. Synthesis of Block Copolymers With Controlled Chain Architecture -- References -- 4. Polymers Bearing Reactive, Pendant Cyclic Carbonate (CC) Group: Syntheses, Post-Polymerization Modifications, and Applications / Satyasankar Jana -- 4.1. Introduction -- 4.2. Cyclic Carbonate (CC) Monomers and Polymers -- 4.2.1. Cyclic Carbonate (CC) Monomers and Their Synthesis -- 4.2.2. Polymerization of Cyclic Carbonate (CC) Monomers -- 4.2.3. Alternative Route to Synthesize Pendant CC (Co)polymers by CO2 Addition/Fixation Reaction -- 4.3. Chemical Modification of Pendant CC Polymers -- 4.4. Applications of Pendant CC Polymers -- 4.4.1. Fixing CO2 into Polymer -- 4.4.2. Surface Coating -- 4.4.3. Solid or Gel Polymer Electrolyte for Lithium-Ion Batteries -- 4.4.4. Enzyme Immobilization -- 4.4.5. Photopolymerization -- 4.4.6. Polymer Blends -- 4.5. Conclusion -- References -- 5. Monomers and Polymers Derived from Renewable or Partially Renewable Resources / Anbanandam Parthiban -- 5.1. Building Blocks from Renewable Resources -- 5.2. Polyesters Incorporated with Isosorbide -- 5.2.1. Poly(hydroxy ester)s Derived from Macrolides -- 5.2.2. Semicrystalline Polymers from Fatty Acids -- 5.2.3. Cyclic Ester Derived from a Natural Precursor -- 5.2.4. Polymerization of Dilactone Derived from 12-Hydroxy Stearic Acid -- 5.2.5. Thermoplastic Elastomers Derived from Polylactide and Polymenthide -- 5.3. Rosin and Developments Associated with Rosin -- 5.3.1. Poly amides and Polyesters Derived from Modified Levopimeric Acid -- 5.3.2. Radical Polymerization of Modified Dehydroabietic Acid -- 5.3.3. ATRP of Vinyl Monomers Derived from Dehydroabietic Acid -- 5.3.4. Block Copolymers Derived from Dehydroabietic Acid Derivative -- 5.4. Polyurethanes from Vegetable Oils -- 5.4.1. Polyurethanes Derived from Plant Oil Triglycerides -- 5.4.2. Long-Chain Unsaturated Diisocyanates Derived from Fatty Acids of Vegetable Origin -- 5.5. CO2 as Renewable Resource Comonomer -- 5.6. Renewable Triblock Copolymer-Based Pressure-Sensitive Adhesives (PSA) -- 5.7. Photocurable Renewable Resource Polyester -- 5.8. Renewable Resource-Derived Waterborne Polyesters -- 5.8.1. Polyesters Made Up of Isosorbide and Succinic Acid -- 5.8.2. Polyesters Modified with Citric Acid -- 5.9. Polymers Formed by Combining Renewable Resource Monomers with that Derived from Petroleum Feedstock -- 5.10. Conclusion and Outlook -- References -- 6. Microporous Organic Polymers: Synthesis, Types, and Applications / Bien Tan -- 6.1. Introduction -- 6.2. Preparations of MOPS -- 6.2.1. Polymers of Intrinsic Microporosity -- 6.2.2. Hypercrosslinked Polymer -- 6.2.3. Covalent Organic Frameworks -- 6.2.4. Conjugated Microporous Polymers -- 6.3. Hydrogen Adsorption -- 6.3.1. HCPs for Hydrogen Adsorption -- 6.3.2. PIMs for Hydrogen Adsorption -- 6.3.3. COFs for Hydrogen Adsorption -- 6.3.4. CMPs for Hydrogen Adsorption -- 6.4. Carbon Dioxide Capture -- 6.5. Separations -- 6.5.1. HCPs for Separations -- 6.5.2. PIMs for Separations -- 6.5.3. CMPs for Separations -- 6.6. Catalysis -- 6.7. Prospect -- References -- 7. Dendritic Copolymers / Srinivasa Rao Vinukonda -- 7.1. Introduction -- 7.2. Synthesis Approaches or Strategies -- 7.2.1. AB2 + A2 Approach -- 7.2.2. AB2 + AB Approach -- 7.2.3. B3 + A2 + B2 Approach (Biocatalyst) -- 7.2.4. Macromonomers Approach -- 7.2.5. Dendrigraft Approach -- 7.2.6. Linear -- Dendritic Copolymers -- 7.2.7. Living Anionic Polymerization -- 7.2.8. Controlled Living Radical Polymerization -- 7.2.9. Click Chemistry -- 7.3. Properties of Dendritic Copolymers -- 7.3.1. Molecular Weight and Molecular Weight Distribution -- 7.3.2. Degree of Branching (DB) -- 7.3.3. Intrinsic Viscosity -- 7.4. Applications of Dendritic Copolymers -- References -- SECTION II APPLICATIONS OF COPOLYMERS -- 8. New Class of Ion-Conductive Polymer Electrolytes: CO2/Epoxide Alternating Copolymers With Lithium Salts / Yoichi Tominaga -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Preparation of Monomers and Catalyst -- 8.2.2. Copolymerization of Epoxides with CO2 -- 8.2.3. Preparation of Electrolyte Membranes -- 8.2.4. Measurements -- 8.3. Results and Discussion -- 8.3.1. NMR Characterization -- 8.3.2. Characteristics of Polycarbonates -- 8.3.3. Thermal Analysis of Polycarbonates -- 8.3.4. Impedance Measurement of Copolymers -- 8.3.5. FT-IR Measurement -- 8.3.6. PEC System: Effect of Salt Concentration -- 8.4. Conclusion -- References -- 9. Block Copolymer Nanopatterns as Enabling Platforms for Device Applications -- Status, Issues, and Challenges / Sivashankar Krishnamoorthy -- 9.1. Introduction -- 9.2. Block Copolymer Templates for Pattern Transfer Applications -- 9.2.1. Dimensional Scalability and Fine-Tunability Down to Sub-10 nm Length Scales -- 9.2.2. Directing Self-Assembly of Block Copolymers -- 9.2.3. Block Copolymers for Directed Nanoscale Synthesis and Self-Assembly -- 9.2.4. High Resolution Nanolithography -- 9.2.5. Nanomanufacturing Material Patterns for Applications -- 9.2.6. Top-Down Patterning of Block Copolymer Nanostructures -- 9.3. Specific Instances in Exploitation of Block Copolymers in Device Applications -- 9.3.1. Memory Devices -- 9.3.2. Integrated Circuit Elements -- 9.3.3. Photovoltaic and Optoelectronics Applications -- 9.3.4. Sensors -- 9.3.5. Nanoporous Membranes for Size-Exclusive Filtration or Sensing -- 9.4. Conclusions -- References -- 10. Stimuli-Responsive Copolymers and Their Applications / He Tao -- 10.1. Introduction -- 10.2. Temperature-Responsive Copolymers and Applications -- 10.2.1. Temperature-Responsive Copolymers Based on LCST -- 10.3. pH-Responsive Copolymers and Applications -- 10.3.1. pH-Responsive Segments -- 10.3.2. Polymer Nanoparticles/Micelles Prepared from pH-Responsive Copolymers -- 10.3.3. pH-Responsive Surfaces and Hydrogels -- 10.3.4. Typical Applications of pH-Responsive Copolymers -- 10.4. Biologically Responsive Copolymers and Applications -- 10.4.1. Glucose-Responsive Copolymers and Applications -- 10.5. Field-Responsive Copolymers and Applications -- 10.5.1. Electric-Responsive Copolymers -- 10.5.2. Magneto-Responsive Copolymers -- 10.5.3. Light-Responsive Copolymers -- 10.6. Conclusion -- References -- 11. Pharmaceutical Polymers / Hideki Ichikawa
Note continued: 11.1. Introduction to Pharmaceutical Polymers -- 11.2. Applications of Pharmaceutical Polymers -- 11.2.1. Polymers as Excipients -- 11.2.2. Functional Excipients -- 11.2.3. Drug Delivery Agents -- 11.2.4. Solubility and Bioavailability Enhancement -- 11.2.5. Transdermal Drug Delivery -- 11.2.6. Novel Polymeric Hydrogels for Drag Delivery Applications -- 11.3. Summary -- References -- 12. Polymer Conjugates of Proteins and Drugs to Improve Therapeutics / Ajazuddin -- 12.1. Introduction -- 12.2. Polymers for Therapeutic Conjugation -- 12.2.1. Poly(ethylene Glycol) Protein Conjugate -- 12.2.2. Significance of PEG -- 12.2.3. Chemistry of Protein -- PEG Conjugation -- 12.2.4. Biofate of PEGylated Proteins -- 12.3. PEGylated Proteins in Clinical Practice -- 12.3.1. PEG Conjugate with Low Molecular Weight Drugs -- 12.3.2. PEG Structures for Small-Molecule PEGylation -- 12.3.3. Advantages of PEGylated Drugs -- 12.4. N-(2-Hydroxypropyl) Methacrylamide (HPMA) Copolymer Conjugate -- 12.5. Poly(L-Glutamic Acid) Conjugates -- 12.6. Polysialic Acid (PSA) Conjugates -- 12.7. Conclusion -- References
Summary Understanding the reactivity of monomers is crucial in creating copolymers and determining the outcome of copolymerization. Covering the fundamental aspects of polymerization, Synthesis and Applications of Copolymers explores the reactivity of monomers and reaction conditions that ensure that the newly formed polymeric materials exhibit desired properties. Referencing a wide-range of disciplines, the book provides researchers, students, and scientists with the preparation of a diverse variety of copolymers and their recent developments, with a particular focus on copolymerization, crystallizat
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Polymerization.
Copolymers.
Copolymers -- Industrial applications
polymerization.
copolymers.
TECHNOLOGY & ENGINEERING -- Chemical & Biochemical.
Copolymers
Polymerization
Form Electronic book
Author Parthiban, Anbanandam, editor
LC no. 2014012987
ISBN 9781118860489
1118860489
9781118860410
1118860411
9781118860168
1118860160
1118057465
9781118057469
9781306876414
1306876419