Limit search to available items
308 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Handbook of energy management in agriculture / Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta, editors
Published Singapore : Springer, 2023

Copies

Description 1 online resource
Contents Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Contributors -- Part I: Energy Requirement in the Agricultural Food Chain -- Carbon Footprint in Rice Cultivation -- 1 Introduction -- 2 Variation of C Footprint in Different Phenology of Rice Cultivation -- 2.1 Methane Emission and Paddy Growth Stages -- 2.2 The Life Cycle of Rice Production and Carbon Footprint -- 2.3 Assessment of Carbon Footprint in Rice Cultivation -- 3 Rice Straw Burning and C Footprint -- 4 Monitoring of GHG Emission: Methodology and Calculation -- 4.1 Measurement of Methane and Nitrous Oxide
5 Calculation of CH4 and N2O Flux -- 5.1 Measurement of Carbon Dioxide (CO2) -- 5.1.1 Alkali Trap Method -- 5.1.2 Soil Respirator -- 5.1.3 Long-Term Measuring Chamber -- 5.1.4 Temporary Portable Measuring Chamber -- 6 Agronomic Intervention to Reduce GHG Emission Under Rice Cultivation -- 6.1 Improved Irrigation Water Management -- 6.1.1 Alternate Wetting and Drying -- 6.1.2 Midseason Drainage -- 6.1.3 Drip Irrigation -- 6.1.4 Laser Land Leveling -- 7 Adaption of Best Nitrogen Management Techniques -- 7.1 Slow-Release Fertilizers -- 7.2 Urease Inhibitors -- 7.3 Nitrification Inhibitors
7.4 Urea Deep Placement -- 7.5 More Use of Organic Manures/Green Manures -- 7.6 4R Nutrient Stewardship Based N Application -- 8 Adaption of Improved Rice Production Technologies -- 9 Decision Support Tool -- 10 Soil and Nutrient Management to Reduce GHG Emission Under Rice Cultivation -- 10.1 Mitigating CH4 Emission -- 10.2 Mitigating N2O Emission -- 11 Future Roadmap for Carbon-Smart Rice Cultivation -- 12 Conclusion -- References -- Energy Requirements for Sustainable Sugarcane Cultivation -- 1 Introduction -- 1.1 Method of Energy Calculation -- 2 Operation-Wise Energy Footprints
2.1 Seedbed Preparation -- 2.2 Planting/Transplanting -- 2.3 Weeding and Intercultural Operations -- 2.4 Irrigation -- 2.5 Fertilizer/Nutrient Management -- 2.6 Plant Protection -- 2.7 Harvesting -- 2.8 Residue Management and its Benefits -- 3 Source-Wise Energy -- 3.1 Overall Energy Assessment Based on the Category of Energy -- 3.2 Energy Indices -- 4 Future Pathway -- 4.1 Strategies for Energy Optimization -- 5 Conclusion -- References -- Carbon Footprint of Different Energy-Intensive Systems -- 1 Introduction -- 2 Agriculture as an Energy-Intensive System -- 3 Definition of Carbon Footprint
4 Why Carbon Footprinting? -- 5 Agriculture and Climate Change -- 6 Factors Contributing to Carbon Footprint of Different Systems in Agriculture -- 7 Use of Inorganic N Fertilizer -- 8 Fossil Fuels -- 9 Pesticide Use -- 10 Fuels -- 11 Waste and Water -- 12 Carbon Footprint Calculation -- 13 Carbon Footprint Calculations for Energy -- 14 Selection of Conversion Factors -- 15 Steps to Reduce Carbon Footprint -- 15.1 New Technologies to Reduce Enteric Fermentation -- 16 Cutting Emissions from Pasture Manure -- 17 Increase Nitrogen Use Efficiency to Reduce Fertilizer Emissions
Summary This handbook provides a holistic overview of different aspects of energy management in agriculture with an orientation to address the sustainable development goals. It covers possible applications not only from a technical point of view, but also from economic, financial, social, regulatory, and political viewpoints. Agriculture is one of the most imperative sectors that contribute to the economy across different agro-ecologies of the universe with energy inputs in each stage of production, from making and applying chemicals to fueling tractors that lay seeds and harvest crops to electricity for animal housing facilities. The majority of agricultural research has focused on the use of input, production, and productivity, whereas rational energy budgeting and use remain an overlooked and likely underestimated segment, ignored so far while formulating agro-ecosystem framework. Energy management study is a new frontier of agriculture and is challenging du to complex enterprises, spatial-temporal variability, exposure to pollution, and the predominant effect of the anthropogenic factor on ecology and environment. But it is worth taking the challenge considering the important prerequisite role of energy for sustainable development which has been evidenced from increasing research in recent times. Of recent origin, there are critical, in-depth studies around the globe assessing the capture and flow of energy in the ecosystem, which will help to develop a conceptual framework to incorporate this vital resource in the agriculture management template. This book is a state-of-the-art resource for a broad group of readers including a diversity of stakeholders and professionals in universities, public energy institutions, farmers and farming industry, public health and other relevant institutions, and the broader public as well
Notes Includes index
Print version record
Subject Agriculture and energy.
Power resources -- Management
Form Electronic book
Author Rakshit, Amitava.
Biswas, Asim.
Sarkar, Deepranjan.
Meena, Vijay Singh.
Datta Rahul
ISBN 9811977364
9789811977367