Limit search to available items
151 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Patureau, Frederic William

Title Organic Redox Chemistry Chemical, Photochemical and Electrochemical Syntheses
Published Newark : John Wiley & Sons, Incorporated, 2021

Copies

Description 1 online resource (248 p.)
Contents Cover -- Title Page -- Copyright -- Contents -- Biography -- Preface -- Chapter 1 Chemical Oxidative C-C Bond Formation -- 1.1 Introduction -- 1.2 Oxidative Aryl-Alkenyl Bond Formation -- 1.2.1 Oxidative Mizoroki-Heck Reaction with Arylmetal Reagents -- 1.2.2 Direct Oxidative Mizoroki-Heck Reaction with Arene C-Hs (Fujiwara-Moritani Reaction) -- 1.3 Oxidative Aryl-Aryl Bond Formation -- 1.3.1 Oxidative C-H/C-M Biaryl Cross-Coupling -- 1.3.2 Oxidative C-H/C-H Biaryl Cross-Coupling -- 1.4 Oxidative Aryl-Alkynyl Bond Formation -- 1.5 Oxidative C-C Bond Formation at Csp3 Center -- 1.6 Conclusion -- References -- Chapter 2 Electrochemical Oxidative C-C Bond Formation -- 2.1 Electrochemical Oxidative Aryl-Aryl Cross-Coupling Reaction -- 2.2 Electrochemical Oxidative Benzyl-Aryl Cross-Coupling Reaction -- 2.3 Electrochemical Oxidative Arylation of Olefins -- 2.4 Electrochemical Oxidative Arylation of Alkynes -- 2.5 Electrochemical Oxidative Cross-Dehydrogenative Coupling of C(sp3)-H and C(sp2)-H Bonds -- References -- Chapter 3 Fundamentals of Photochemical Redox Reactions -- 3.1 Introduction: A Brief History of Photochemistry -- 3.2 Photochemistry: Background and Theory -- 3.2.1 The Electromagnetic Spectrum -- 3.2.2 Allowed and Forbidden Transitions -- 3.2.3 Photophysical Processes -- 3.2.3.1 Jablonski Diagrams -- 3.2.3.2 Absorption -- 3.2.3.3 Vibrational Relaxation -- 3.2.3.4 Internal Conversion -- 3.2.3.5 Fluorescence -- 3.2.3.6 Intersystem Crossing -- 3.2.3.7 Phosphorescence -- 3.2.4 Electron Transfers -- 3.2.4.1 Photoinduced Electron Transfer -- 3.2.4.2 Mechanisms of Electron Transfer -- 3.2.4.3 Marcus Theory -- 3.2.5 Laboratory Techniques for Studying Photoredox Processes -- 3.2.5.1 sUV-Visible Spectroscopy -- 3.2.5.2 Emission Spectroscopy -- 3.2.5.3 Transient Absorption Spectroscopy -- 3.2.5.4 Cyclic Voltammetry
3.2.6 Practical Considerations for Performing Photochemical Reactions -- 3.2.6.1 Factors Influencing Bimolecular Reactions -- 3.2.6.2 Photoreactor Design -- 3.2.6.3 Choice of Light Source -- 3.3 Photoredox Catalysis -- 3.3.1 General Mechanisms of Photocatalysis -- 3.3.2 Design Principles for Effective Photoredox Catalysts -- 3.3.2.1 Effective Absorption of Light -- 3.3.2.2 High Quantum Yield of Desired Excited State -- 3.3.2.3 Long-Lived Excited State -- 3.3.2.4 Favorable Thermodynamics -- 3.3.2.5 Redox Reversibility -- 3.3.3 Inorganic Photocatalysts -- 3.3.4 Organic Excited-State Oxidants -- 3.3.5 Organic Excited-State Reductants -- 3.3.6 Open-Shell Photoredox Catalysts -- 3.4 Photochemistry of Electron Donor-Acceptor Complexes -- 3.4.1 Background and Theory -- 3.4.1.1 What Is an EDA Complex? -- 3.4.1.2 How do EDA Complexes Interact with Light? -- 3.4.1.3 Electron Transfer in EDA Complexes -- 3.4.1.4 Environmental Factors Affecting EDA Complexes -- 3.4.2 Early Examples of EDA Photochemistry -- 3.4.3 Recent Examples of EDA Photochemistry -- 3.4.3.1 Rediscovering EDA Complexes through Photoredox Catalysis -- 3.4.3.2 Stoichiometric EDA Reactions -- 3.4.3.3 Use of Sacrificial Donors and Acceptors -- 3.4.3.4 Redox Auxiliaries to Expand Donor and Acceptor Scope -- 3.4.3.5 Catalytic EDA Reactions -- 3.4.3.6 Enantioselective Reactions of EDA Complexes -- 3.5 Concluding Thoughts -- Suggested Additional Reading -- Photochemistry and Photophysical Processes -- Electrochemical Methods -- Photoredox Catalysis -- Earth Abundant Metal Photoredox Catalysis -- EDA Complexes -- References -- Chapter 4 C-H Bond Functionalization with Chemical Oxidants -- 4.1 Introduction -- 4.1.1 A Shift in the Rate-Determining Step -- 4.1.2 The Nature of the Oxidant -- 4.2 Metal-Based Oxidants and Other Inorganic Oxidants -- 4.2.1 Silver Salt Oxidants -- 4.2.2 Copper Salt Oxidants
4.2.3 Other Inorganic Oxidants -- 4.3 Organic Oxidants -- 4.3.1 Organic Peroxides -- 4.3.2 Quinones -- 4.4 Internal Oxidants (DGox) -- 4.5 Use of O2 as an Oxidant -- 4.6 Dehydrogenative Couplings with No Oxidant at All -- 4.7 Conclusion -- References -- Chapter 5 Electrochemical Reductive Transformations -- 5.1 General Characteristics of Electrochemical Reactions -- 5.2 Mechanism of Organic Electrochemical Reductions -- 5.3 Characteristics of Organic Electrochemical Reductions -- 5.3.1 Umpolung -- 5.3.2 Selectivity -- 5.3.2.1 Chemoselectivity -- 5.3.2.2 Reaction Pathway Selectivity -- 5.3.2.3 Regioselectivity -- 5.3.2.4 Stereoselectivity -- 5.3.2.5 Selectivity Depending on Electrode Materials -- 5.4 Electroauxiliaries -- 5.4.1 Electroauxiliaries Based on Readily Electron-Transferable Functional Groups -- 5.4.2 Electroauxiliaries Based on Coordination Effects -- 5.5 Reaction Pattern of Organic Electrochemical Reductions -- 5.5.1 Transformation Type of Functional Group -- 5.5.2 Addition Type -- 5.5.3 Insertion Type -- 5.5.4 Substitution Type -- 5.5.5 Substitutive Exchange Type -- 5.5.6 Elimination Type -- 5.5.7 Dimerization Type -- 5.5.8 Crossed Dimerization -- 5.5.9 Cyclization Type -- 5.5.10 Polymorphism Formation Type -- 5.5.11 Polymerization Type -- 5.5.12 Cleavage Type -- 5.5.13 Metalation Type -- 5.5.14 Asymmetric Synthesis Type -- 5.6 Electrochemically Generated Reactive Species -- 5.6.1 Cathodically Generated Carbon Species -- 5.6.1.1 Reduction of Alkyl Halides -- 5.6.1.2 Reduction of Ketone and Imine -- 5.6.1.3 Reduction of Activated Olefin and Conjugated Olefin -- 5.6.1.4 Reduction of Active Hydrogen Compounds -- 5.6.1.5 Reduction of gem- and vic-Dihalogeno Compounds -- 5.6.2 Cathodically Generated Heteroatom Species -- 5.6.2.1 Cathodically Generated Nitrogen Species -- 5.6.2.2 Reduction of Alcohol and Carboxylic Acid
5.6.2.3 14-Family and 15-Family Element Species -- 5.7 Advanced Methodology for Electrochemical Reductive Transformations -- 5.7.1 Electrocatalysis for Reductive Transformations -- 5.7.1.1 Direct and Indirect Electrochemical Reductions -- 5.7.1.2 Kinds of Mediators for Reductive Transformations -- 5.7.1.3 Electrorechemical Reductive Transformations Using Mediators -- 5.7.2 Electrogenerated Bases -- 5.8 Conclusions -- References -- Chapter 6 Electrochemical Redox-Mediated Polymer Synthesis -- 6.1 Introduction -- 6.2 Synthesis of Conducting Polymers by Electrochemical Redox -- 6.2.1 Electrochemical Redox Behavior of Conducting Polymers -- 6.2.2 Oxidative Electropolymerization of Aromatic Monomers -- 6.2.3 Electrochemical Copolymer Synthesis -- 6.2.4 Reductive Electropolymerization of Aromatic Monomers -- 6.2.5 Polysilane Synthesis by Cathodic Reduction -- 6.2.6 Electropolymerization Under Nonconventional Conditions -- 6.3 Post-Functionalization of Conducting Polymers by Electrochemical Redox -- 6.3.1 Functionalization of Conducting Polymers by Anodic Substitution -- 6.3.2 Cathodic Reduction and Paired Reactions -- 6.3.3 Functionalization of Polyaniline by the CRS Method -- 6.3.4 Oxidation-Induced Intramolecular Cyclization of Conducting Polymer -- 6.3.5 Electrogenerated Transition-Metal Catalysts for Post-Functionalization -- 6.4 Synthesis of Nonconjugated Polymers by Electrochemical Redox -- 6.4.1 Electropolymerization of Electroactive Polymers -- 6.4.2 Electrochemical Redox-Controlled Polymerization -- 6.4.3 Electrochemically Induced Film Formation via Crosslinking -- 6.5 Conclusion -- References -- Chapter 7 Chemical Paired Transformations -- 7.1 Introduction -- 7.2 Direct Arylation of Arenes with Aryl Halides -- 7.3 Electron-Catalyzed Cross-Coupling Reactions of Aryl Halides -- 7.4 Conclusions -- References
Chapter 8 Photochemical Paired Transformations -- 8.1 Introduction -- 8.2 Basic Concepts for Photochemical Hydrogen Atom Transfer (HAT) Process -- 8.2.1 Concept 1: Direct HAT by the Excited Photocatalyst -- 8.2.2 Concept 2: Indirect HAT Triggered by Photocatalysis -- 8.3 Asymmetric Radical Functionalization Associated with Direct HAT by Photocatalysts -- 8.3.1 Photocatalytic Functionalization of C(sp3)-H Bonds Based on Concept 1 -- 8.3.2 Asymmetric Transformations Based on Concept 1 -- 8.4 Asymmetric Radical Functionalization Associated with Indirect HAT Triggered by Photocatalysis -- 8.4.1 Photocatalytic Functionalization of C(sp3)-H Bonds Through 1,5-Hydrogen Atom Transfer Processes -- 8.4.2 Asymmetric Transformations Based on Concept 2 -- 8.5 Summary and Outlook -- References -- Chapter 9 Paired Electrolysis -- 9.1 Introduction -- 9.2 Paired Electrolysis for Sequential Reactions at both Electrodes -- 9.2.1 Using an Undivided Cell -- 9.2.2 Using a Flow Cell -- 9.3 Paired Electrolysis with Two Different Reactions at both Electrodes -- 9.3.1 Using an Undivided Cell -- 9.3.2 Using a Divided Cell -- 9.3.3 Using a Flow Cell -- 9.4 Paired Electrolysis for Generation of Two Intermediates to Afford a Final Product by the Sequential Reaction -- 9.4.1 Using an Undivided Cell -- 9.4.2 Using a Divided Cell -- 9.4.3 Using a Flow Cell -- 9.5 Conclusion -- References -- Index -- EULA
Notes Description based upon print version of record
Form Electronic book
Author Yoshida, Jun-ichi
ISBN 9783527815708
3527815708