Limit search to available items
47 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Boron in plants and agriculture : exploring the physiology of boron and its impact on plant growth / edited by Tariq Aftab [and more]
Published [S.l.] : Academic Press, 2022

Copies

Description 1 online resource
Contents Front Cover -- Boron in Plants and Agriculture -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Essentiality of boron in higher plants -- 1.1 Introduction -- 1.2 Importance of boron in agriculture -- 1.3 Importance of boron in higher plants during the vegetative phase -- 1.3.1 Structural functions of boron -- 1.3.2 Biochemical/hormonal functions of boron -- 1.4 Importance of boron in higher plants during the reproductive phase -- 1.5 Boron dynamics and transport inside higher plants -- 1.6 B translocation and distribution in higher plants -- 1.7 Sensitive and tolerant plants to different concentrations of boron -- 1.8 Boron deficiency in higher plants -- 1.8.1 Management of boron deficiency in higher plants -- 1.9 Boron toxicity in higher plants -- 1.9.1 Management of boron toxicity in higher plants -- 1.10 Conclusion and future perspectives -- References -- 2 Boron in fruit crops: plant physiology, deficiency, toxicity, and sources for fertilization -- 2.1 Introduction -- 2.2 Boron roles in physiology and transport -- 2.3 Boron toxicity and deficiency symptoms -- 2.4 Boron availability to plants, fertilization, and boron sources -- 2.5 Boron mineral sources and fertilization -- Acknowledgements -- References -- 3 Boron deficiency and toxicity symptoms in plants -- 3.1 Introduction -- 3.2 Symptoms of boron deficiency -- 3.3 The deficiency of boron -- 3.3.1 Membranes, cytoskeleton, and cell wall -- 3.3.2 Nitrate uptake and fixation -- 3.3.3 Oxidative stress and secondary metabolism -- 3.4 The boron toxicity -- 3.4.1 Boron application for abiotic stress relief -- 3.4.2 Tolerance to boron toxicity -- 3.5 Gene expression and boron -- 3.6 Conclusion and future prospect -- References -- 4 Molecular regulatory mechanisms in plants that underlie phenotypic adaptations to low boron levels -- 4.1 Introduction
4.2 Cessation of plant growth in boron deficient conditions: cell elongation or cell division -- 4.3 Interactions of boron with phytohormones -- 4.3.1 Boron-auxin interactions -- 4.3.2 Boron-cytokinin interactions -- 4.3.3 Boron-ethylene interactions -- 4.3.4 Boron-abscisic acid (ABA) interactions -- 4.3.5 Boron-brassinosteroid interactions -- 4.3.6 Boron-jasmonic acid interactions -- 4.4 Boron deficiency and transcript level changes -- 4.5 Conclusions and outlook -- References -- 5 From outside to inside: mechanisms modulating plant responses to boron stress -- 5.1 Introduction -- 5.2 Architectural adaptation of the root system to boron availability -- 5.3 Regulation of boron uptake: a central process for homeostasis -- 5.4 The role of boron distribution and redistribution in plant adaptation -- 5.5 Biochemical and physiological changes regulating stress tolerance by boron -- 5.6 Molecular effects underlying the effects of boron in plants -- 5.7 Adaptive mechanisms to boron stress in the reproductive phase -- 5.8 Concluding remarks -- Funding -- References -- 6 Physiological and biochemical mechanisms and adaptation strategies of plants under boron deficiency conditions -- 6.1 Introduction -- 6.2 Impact of boron stress on crop productivity -- 6.3 Physiological response of crops under boron stress -- 6.3.1 Photosynthesis -- 6.3.2 Carbon partitioning and source-sink relationship -- 6.3.3 Nitrogen metabolism -- 6.3.4 Interaction other nutrients -- 6.3.5 Transpiration -- 6.3.6 Pollen tube formation -- 6.4 Biochemical response of crops under boron stress -- 6.4.1 Cell wall and membrane permeability -- 6.4.2 Boron transporters -- 6.4.3 Reactive oxygen species and antioxidant system -- 6.4.4 Carbohydrate metabolism -- 6.5 Conclusion -- References -- 7 Role of physical and chemical agents in plants for tolerance to boron nutrition -- 7.1 Introduction
7.2 Public attributes and chemistry of boron -- 7.3 Higher plants require boron as a micronutrient -- 7.4 Toxicity of boron in plants and boron nutrition -- 7.5 Boron pptake and transport mechanisms -- 7.6 Boric acid channels, functions and regulation -- 7.7 The borate exporters: physiological functions -- 7.8 Boron roles in plants -- 7.9 Roles of boron in plant metabolism -- 7.10 Plant tolerance to boron -- 7.11 Primary considerations -- 7.12 Revisiting tolerant mechanisms -- 7.13 Plant genetic modifications for boron susceptibility and resilience -- 7.14 Conclusions -- References -- 8 Impact of boron and its toxicity on photosynthetic capacity of plants -- 8.1 Introduction -- 8.2 Boron toxicity and photosynthesis -- 8.3 Conclusion -- References -- 9 Comprehensive analyses of gene expression and identification of metabolites for boron stress tolerance -- 9.1 Introduction -- 9.2 BOR1 homologs in plants -- 9.3 The metabolites for boron stress tolerance -- 9.4 Gene regulation under boron-deficient conditions -- 9.5 Gene regulation under conditions of excessive boron -- 9.6 Conclusion -- References -- 10 Transcription factors and target genes involved in plant responses to high boron adaptation -- 10.1 Introduction -- 10.2 Transcription factors identified in Arabidopsis thaliana under boron toxicity -- 10.3 Transcription factors identified in barley under boron toxicity -- 10.4 Transcription factors identified in poplar under boron toxicity -- 10.5 Transcription factors identified in rice under boron toxicity -- 10.6 Transcription factors identified in wheat under boron toxicity -- 10.7 Transcription factors identified in Puccinellia distans under boron toxicity -- 10.8 miRNAs involved in post-transcriptional control under boron toxicity -- 10.9 Long noncoding RNAs involved in post-transcriptional control under B toxicity
10.10 Known functions of identified transcription factor families under boron toxicity -- 10.11 Conclusion -- References -- 11 Alleviation of boron toxicity in plants by silicon: mechanisms and approaches -- 11.1 Introduction -- 11.2 Silicon-induced alleviation of boron toxicity -- 11.2.1 Plant growth traits -- 11.2.2 Reduction of boron transport from roots to shoots -- 11.2.3 Oxidative stress and plant defense system -- 11.2.4 Silicon induced improvement in the photosynthesis under boron toxicity -- 11.3 Prospects and challenges -- References -- 12 Agronomic aspects of boron: fertilizers, agronomical strategy, and interaction with other nutrients -- 12.1 Introduction -- 12.2 Status of boron in soils -- 12.3 Importance and functions of boron in plants -- 12.4 Importance of boron in agriculture and quality of production -- 12.5 Responses of different plants/varieties to the status of boron in the soil -- 12.5.1 Plant responses under boron deficiency condition -- 12.5.2 Plant responses under boron toxicity condition -- 12.6 Effect of soil properties on bioavailability of boron -- 12.7 Interactions of boron with other nutrients -- 12.8 Management of boron in the agricultural soils -- 12.8.1 Management of boron under deficiency condition -- 12.8.2 Management of boron under toxicity condition -- 12.9 Boron fertilizers -- 12.10 Conclusion and future perspectives -- References -- 13 Boron, hormones and secondary metabolites in plants: a molecular point of view -- 13.1 Introduction -- 13.2 Roles of boron in plant metabolism -- 13.3 Boron transport mechanisms -- 13.4 The boron nutritional status evokes contrasting changes in plant hormones metabolism -- 13.5 Effect of boron deficiency on plant development -- 13.6 Alleviation of the effects of boron toxicity -- 13.7 Conclusions and future prospects -- References
14 An overview on boron and pollen germination, tube growth and development under in vitro and in vivo conditions -- 14.1 Introduction -- 14.2 In vitro studies on boron and pollen -- 14.2.1 Almond (Prunus amygdalus -- Rosaceae) -- 14.2.2 Almond (Prunus amygdalus -- Rosaceae) and peach (Prunus persica -- Rosaceae) -- 14.2.3 Apocynaceae family (Allamanda, Alstonia, Catharanthus, Nerium, Plumeria, Thevetia, and Tabernaemontana) -- 14.2.4 Areca palm (Areca catechu L. -- Arecaceae) -- 14.2.5 Calabash tree (Crescentia Cujete L. -- Bignoniaceae) -- 14.2.6 Chinese fir (Cunninghamia lanceolata L. -- Cupressaceae) -- 14.2.7 Jacquinia ruscifolia Jacq. (Theophrastaceae) -- 14.2.8 Kiwifruit (Actinidia deliciosa Cultivar Matua -- Actinidiaceae) -- 14.2.9 Henna tree (Lawsonia inermis Linn. -- Lythraceae) -- 14.2.10 Lychee (Litchi chinensis Sonn. -- Sapindaceae) -- 14.2.11 Maize (Zea mays L. -- Poaceae) -- 14.2.12 Mitragyna parvifolia (Roxb.) Korth. -- (Rubiaceae) -- 14.2.13 Olive (Olea europaea L. -- Oleaceae) -- 14.2.14 Pistachio (Pistacia vera L. -- Anacardiaceae) -- 14.2.15 Pomegranate (Punica granatum -- Lythraceae) -- 14.3 In vivo studies on boron and pollen -- 14.3.1 Apple (Malus domestica L. -- Rosaceae) -- 14.3.2 Lowbush Blueberry (Vaccinium angustifolium Ait. -- Ericaceae) -- 14.3.3 Mango (Mangifera indica L. cv. -- Anacardiaceae) -- 14.3.4 Peach (Prunus persica -- Rosaceae) -- 14.3.5 Petunia and Agapanthus (Petunia Juss. -- Solanaceae and Agapanthus L Herit. -- Amaryllidaceae) -- 14.3.6 Picea meyeri (Pinaceae) -- 14.4 Conclusion -- References -- 15 Impact of boron nutrition on pollen stigma interaction and seed quality -- 15.1 Introduction -- 15.2 Experimental design -- 15.3 Pollen-stigma interaction -- 15.4 Steps in pollen-stigma interaction -- 15.5 Enzymes responsible for pollen-stigma interaction -- 15.5.1 Esterase -- 15.5.2 Acid phosphatase
Notes Print version record
Subject Crops -- Effect of boron on.
Plants -- Effect of boron on.
Boron -- Physiological aspects
Crops -- Effect of boron on
Plants -- Effect of boron on
Form Electronic book
Author Aftab, Tariq, editor.
ISBN 9780323908580
0323908586