Limit search to available items
28 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Microbiota and biofertilizers. Vol 2, Ecofriendly tools for reclamation of degraded soil environs / Gowhar Hamid Dar, Rouf Ahmad Bhat, Mohammad Aneesul Mehmood, Khalid Rehman Hakeem, editors
Published Cham : Springer, 2021

Copies

Description 1 online resource (366 pages)
Contents Intro -- Foreword -- Preface -- Acknowledgements -- About the Book -- Contents -- Contributors -- About the Editors -- Chapter 1: Chemical Fertilizers and Their Impact on Soil Health -- 1.1 Introduction -- 1.2 Types of Chemical Fertilizers -- 1.3 Nitrogenous Fertilizer -- 1.3.1 Characteristics -- 1.4 Phosphorus Fertilizer -- 1.4.1 Characteristics -- 1.5 Potassium Fertilizer -- 1.5.1 Characteristics of Potassium Fertilizer -- 1.6 Advantages of Chemical Fertilizer -- 1.7 Drawbacks of Chemical Fertilizer -- 1.8 Important Nutrients in Fertilizers -- 1.9 Primary Nutrients
1.10 Secondary Nutrients -- 1.11 Micronutrients -- 1.12 Soil Health Concept -- 1.13 Positive Effects of Fertilizers -- 1.14 Impacts of Chemical Fertilizers on Soil Health -- 1.14.1 Soil Quality -- 1.14.2 Physicochemical Properties of Soil -- 1.14.3 Soil Enzyme Activity -- 1.14.4 Soil Compaction -- 1.14.5 Soil Acidification -- 1.14.6 Effect on Soil Biota -- 1.15 Soil Organic Matter (SOM) -- 1.16 Soil Salinity -- 1.17 Effect on Plants -- 1.18 Conclusion -- References -- Chapter 2: Microbial Bioremediation of Pesticides/Herbicides in Soil -- 2.1 Introduction -- 2.2 Merits of Pesticide Use
2.3 Risks Associated with Pesticide Use -- 2.4 Microbial Bioremediation -- 2.5 Factors Affecting Microorganism Bioremediation of Pesticide -- 2.6 Conclusion -- References -- Chapter 3: Pollution Cleaning Up Techniques -- 3.1 Introduction -- 3.2 Agricultural Pollution -- 3.3 Bioremediation Via Microbes -- 3.4 Microbial Processes Concerned with Bioremediation -- 3.4.1 Metal Microbe Mechanism of Interaction -- 3.5 Bioremediation Strategies -- 3.6 Phytoremediation -- 3.7 Phytoextraction -- 3.8 Phytostabilization -- 3.9 Rhizofiltration -- 3.10 Phytovolatilization
3.11 Aquatic Plant Species Studied for Phytoremediation -- 3.12 Pesticide Degradation by Bacteria -- 3.12.1 Role of Fungi -- 3.12.2 Role of Enzymes -- 3.13 Conclusion -- References -- Chapter 4: Role of Mushrooms in the Bioremediation of Soil -- 4.1 Introduction -- 4.2 Mushroom as a Significant Tool for Mycoremediation -- 4.3 Remediation Through Mushrooms -- 4.3.1 Biodegradation -- 4.3.2 Bioconversion -- 4.3.3 Biosorption -- 4.4 White-Rot Fungi Degradation System -- 4.5 Mycoremediation of Solid Wastes -- 4.6 Xenobiotic Organic Compounds (XOCs) and Mycoremediation -- 4.6.1 Petroleum Hydrocarbons
4.6.2 Polycyclic Aromatic Hydrocarbons (PAHs) -- 4.6.3 Halogenated Organic Compounds -- 4.6.4 Synthetic Dyes -- 4.6.5 Synthetic Pesticides -- 4.6.6 Heavy Metals -- 4.7 Role of Mycorrhizae in Remediation of Soil -- 4.8 Disadvantages of Mycoremediation -- 4.9 Conclusion and Future Aspects -- References -- Chapter 5: Microbial Degradation of Organic Constituents for Sustainable Development -- 5.1 Introduction -- 5.2 Some Persistent Organic Pollutants (POPs) -- 5.3 Role of Microbes in the Degradation of Organic Substances -- 5.4 Microbial Degradation of Persistent Organic Pollutants
Summary The dependence of present farming on artificial input of chemical fertilizers has caused numerous ecological tribulations associated with global warming and soil contamination. Moreover, there is an essential requirement for realistic agricultural practices on a comprehensive level. Accordingly, biofertilizers including microbes have been recommended as feasible environmentally sound solutions for agricultural practices which not only are natural, and cost-effective but also preserve soil environs and important biota of agricultural land. In addition, it enhances the nutrient quantity of soils organically. Microbial biofertilizers promote plant growth by escalating proficient absorption of nutrients for the plants and by providing an excellent disease-fighting mechanism. Agriculture, the backbone of human sustenance, has been put under tremendous pressure by the ever-increasing human population. Although various modern agro-techniques boosted agricultural production, the excessive use of synthetic fertilizers, pesticides and herbicides have proven extremely detrimental to agriculture as well as to the environment in which it is carried out. Besides this some faulty agricultural practices like monoculture and defective irrigation, further complicate the scenario by eliminating biodiversity, increasing the efflux of nutrients into the water bodies, the formation of algal blooms, eutrophication, damaging the water quality and lowering fish stocks. Biofertilizers are the organic compounds applied to crops for their sustainable growth and the sustainability of the environment as the microbiota associated with biofertilizers interact with the soil, roots and seeds to enhance soil fertility. Application of biofertilizers results in the increased mineral and water uptake, root development, vegetative growth and nitrogen fixation besides liberating growth-promoting substances and minerals that help the maintenance of soil fertility. They further act as antagonists and play a pivotal role in neutralising soil-borne plant pathogens and thus, help in the bio-control of diseases. Application of biofertilizers instead of synthetic fertilizers could be a promising technique to raise agricultural productivity without degrading environmental quality. The present book focuses on the latest research approaches and updates from the microbiota and their applications in the agriculture industry. We believe this book addresses various challenges and shed lights on the possible future of the sustainable agricultural system
Notes 5.5 Microbial Degradation of Pesticides
Print version record
Subject Biofertilizers.
Soil remediation.
Biofertilizers
Soil remediation
Form Electronic book
Author Dar, Gowhar Hamid.
Bhat, Rouf Ahmad, 1981-
Mehmood, Mohammad Aneesul.
Hakeem, Khalid Rehman.
ISBN 9783030610104
3030610101
9783030610111
303061011X
9783030610128
3030610128