Limit search to available items
45 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Lieberman, Norman P., author.

Title A Working Guide to Process Equipment, Fifth Edition / Norman P. Lieberman, Elizabeth T. Lieberman
Edition Fifth edition
Published New York, N.Y. : McGraw Hill LLC, [2022]
©2022

Copies

Description 1 online resource (749 pages) : illustrations
Contents Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface to the Fifth Edition -- Preface to the First Edition -- Introduction -- Acknowledgments -- 1 Process Equipment Fundamentals -- 1.1 Frictional Losses -- 1.2 Density Difference Induces Flow -- 1.3 Natural Thermosyphon Circulation -- 1.4 Reducing Hydrocarbon Partial Pressure -- 1.5 Corrosion at Home -- 1.6 What I Know -- 1.7 Distillation: The First Application -- 1.8 Origin of Reflux -- 1.9 Glossary -- 2 Basic Terms and Conditions -- 3 How Trays Work: Flooding -- 3.1 Tray Types -- 3.2 Tray Efficiency -- 3.3 Downcomer Backup -- 3.4 Downcomer Clearance -- 3.5 Vapor-Flow Pressure Drop -- 3.6 Jet Flood -- 3.7 Incipient Flood -- 3.8 Tower Pressure Drop and Flooding -- 3.9 Optimizing Feed Tray Location -- 3.10 Catacarb CO2 Absorber Flooding -- 4 How Trays Work: Dumping Weeping through Tray Decks -- 4.1 Tray Pressure Drop -- 4.2 Other Causes of Tray Inefficiency -- 4.3 Bubble-Cap Trays -- 4.4 New High Capacity Trays -- 4.5 Calculating Tray Efficiency -- 5 Notes on Tray Design Details -- 5.1 Process Design Equipment Details -- 6 Why Control Tower Pressure Options for Optimizing Tower Operating Pressure -- 6.1 Selecting an Optimum Tower Pressure -- 6.2 Raising the Tower Pressure Target -- 6.3 Lowering the Tower Pressure -- 6.4 The Phase Rule in Distillation -- 7 What Drives Distillation Towers Reboiler Function -- 7.1 The Reboiler -- 7.2 Heat-Balance Calculations -- 8 How Reboilers Work Thermosyphon, Gravity Feed, and Forced -- 8.1 Thermosyphon Reboilers -- 8.2 Forced-Circulation Reboilers -- 8.3 Kettle Reboilers -- 8.4 Don?t Forget Fouling -- 8.5 Vapor Binding in Steam Reboilers -- 9 Inspecting Tower Internals -- 9.1 Tray Deck Levelness -- 9.2 Loss of Downcomer Seal Due to Leaks -- 9.3 Effect of Missing Caps -- 9.4 Repairing Loose Tray Panels -- 9.5 Improper Downcomer Clearance -- 9.6 Inlet Weirs -- 9.7 Seal Pans -- 9.8 Drain Holes -- 9.9 Vortex Breakers -- 9.10 Chimney Tray Leakage -- 9.11 Shear Clips -- 9.12 Bubble-Cap Trays -- 9.13 Final Inspection -- 9.14 Conclusion -- Reference -- 10 How Instruments Work Levels, Pressures, Flows, and Temperatures -- 10.1 Level -- 10.2 Foam Affects Levels -- 10.3 Pressure -- 10.4 Flow -- 10.5 Temperature -- Reference
11 Packed Towers: Better Than Trays? Packed-Bed Vapor and Liquid Distribution -- 11.1 How Packed Towers Work -- 11.2 Maintaining Functional and Structural Efficiency in Packed Towers -- 11.3 Advantages of Packing vs. Trays -- Reference -- 12 Distillation Process Engineering Design Errors -- 12.1 Sour Water Stripper Inefficient Reboiler Balance Line -- 12.2 Elevating Overhead Condenser -- 12.3 Distillation Tray Assembly -- 12.4 Sour Water Stripper Design -- 12.5 Vertical Baffle in Tower Bottoms -- 12.6 Chimney Tray Overflow Pipe -- 12.7 Raffinate Splitter Explosion Texas City -- 12.8 Crude Tower Top P/A -- 12.9 Excessive Thermosyphon Circulation -- 12.10 Tray Hydraulics -- 12.11 Crude Tower Bottom Stripping Tray Retrofit -- 12.12 Vacuum Tower Flash Zone Pressure -- 12.13 Level Tap Location -- 12.14 Crude Tower Overhead -- 12.15 Using High Pressure Steam in an FCU Gasoline Splitter Reboiler -- 12.16 Vacuum Tower Overhead Surface Condenser -- 13 Steam and Condensate Systems Water Hammer and Condensate Backup Steam-Side Reboiler Control -- 13.1 Steam Reboilers -- 13.2 Condensing Heat-Transfer Rates -- 13.3 Maintaining System Efficiency -- 13.4 Carbonic Acid Corrosion -- 13.5 Condensate Collection Systems -- 13.6 Deaerators -- 13.7 Surface Condensers -- 14 Vapor Lock and Exchanger Flooding in Steam Systems -- 14.1 Function of the Steam Trap -- 14.2 Non-Condensable Venting -- 14.3 Corrosive Steam -- 14.4 Condensate Drum -- 14.5 Condensate Drainage and Vapor Lock -- 14.6 Elevated Condensate Collection Drum -- 14.7 Conclusion -- 15 Bubble Point and Dew Point Equilibrium Concepts in Vapor-Liquid Mixtures -- 15.1 Bubble Point -- 15.2 Dew Point -- Reference -- 16 Steam Strippers Source of Latent Heat of Vaporization -- 16.1 Heat of Evaporation -- 16.2 Stripper Efficiency -- References -- 17 Draw-Off Nozzle Hydraulics Nozzle Cavitation Due to Lack of Hydrostatic Head -- 17.1 Nozzle Exit Loss -- 17.2 Critical Flow -- 17.3 Maintaining Nozzle Efficiency -- 17.4 Overcoming Nozzle Exit Loss Limits -- Reference -- 18 Pumparounds and Tower Heat Flows Closing the Tower Enthalpy Balance -- 18.1 The Pumparound -- 18.2 Vapor Flow -- 18.3 Fractionation -- Reference -- 19 Condensers and Tower Pressure Control Hot-Vapor Bypass: Flooded Condenser Control -- 19.1 Subcooling, Vapor Binding, and Condensation -- 19.2 Pressure Control -- Reference -- 20 Air Coolers Fin-Fan Coolers -- 20.1 Fin Fouling -- 20.2 Fan Discharge Pressure -- 20.3 Effect of Reduced Air Flow -- 20.4 Adjustments and Corrections to Improve Cooling -- 20.5 Designing for Efficiency
21 Thermodynamics How It Applies to Process Equipment -- 21.1 Why Is Thermodynamics Important to the Plant Operator? -- 21.2 The Source of Steam Velocity -- 21.3 Converting Latent Heat to Velocity -- 21.4 Effect of Wet Steam -- 21.5 Steam Ejector Temperature Profile -- 21.6 Roto-Flow Turbo Expander -- 21.7 The Meaning of Entropy -- 22 Steam Generation, Deaerators, Steam Systems, and BFW Preparation -- 22.1 Boiler Feedwater -- 22.2 Boiler Feedwater Preparation -- 22.3 Boiler Feedwater Preheat -- 22.4 Boilers -- 22.5 Waste-Heat Boilers -- 22.6 Superheating Steam -- References -- 23 Vacuum Systems: Steam Jet Ejectors -- 23.1 Theory of Operation -- 23.2 Converging and Diverging Compression -- 23.3 Calculations, Performance Curves, and Other Measurements in Jet Systems -- 23.4 Optimum Vacuum Tower-Top Temperature -- 23.5 Measurement of a Deep Vacuum without Mercury -- Reference -- 24 Steam Turbines Use of Horsepower Valves and Correct Speed Control -- 24.1 Principle of Operation and Calculations -- 24.2 Selecting Optimum Turbine Speed -- 24.3 Reciprocating Steam Engines -- 25 Effect of Liquid Water in Steam -- 25.1 Determining the Causes of Wet Steam -- 25.2 Consequences of Wet Steam -- 25.3 Causes of Wet Steam -- 25.4 Boiler Level Control -- 25.5 Effects of Wet Steam -- 25.6 Steam Stripping -- 26 Surface Condensers The Condensing Steam Turbine -- 26.1 The Second Law of Thermodynamics -- 26.2 Surface Condenser Problems -- 26.3 Surface Condenser Heat-Transfer Coefficients -- References -- 27 Shell-and-Tube Heat Exchangers: Heat-Transfer Fouling Resistance -- 27.1 Allowing for Thermal Expansion -- 27.2 Heat-Transfer Efficiency -- 27.3 Exchanger Cleaning -- 27.4 Mechanical Design for Good Heat Transfer -- 27.5 Importance of Shell- Side Cross- Flow -- 27.6 Summary -- References -- 28 Heat Exchanger Innovations -- 28.1 Smooth High Alloy Tubes -- 28.2 Low-Finned Tubes -- 28.3 Sintered Metal Tubes -- 28.4 Spiral Heat Exchanger -- 28.5 Tube Inserts -- 28.6 Twisted Tubes and Twisted Tube Bundle -- 28.7 Helical Tube Support Baffles -- 28.8 The Test of Time -- Reference -- 29 Shell-and-Tube Heat Exchangers: Design Details -- 29.1 Selecting the Process Fluid Location -- 29.2 Design the Shell Side for Ease of Cleaning -- Reference -- 30 Fired Heaters: Fire- and Flue-Gas Side Draft and Afterburn; Optimizing Excess Air -- 30.1 Effect of Reduced Air Flow -- 30.2 Absolute Combustion -- 30.3 Draft -- 30.4 Air Leakage -- 30.5 Efficient Air/Fuel Mixing -- 30.6 Optimizing Excess Air -- 30.7 Correcting O for Moisture Condensation -- 30.8 Air Preheating, Lighting Burners, and Heat Balancing -- Reference
31 Fired Heaters: Process Side Coking Furnace Tubes and Tube Failures -- 31.1 Process Duty versus Heat Liberation -- 31.2 Heater Tube Failures -- 31.3 Flow in Heater Tubes -- 31.4 Low-NOx Burners -- 31.5 Tube Fire-Side Heaters -- 32 Refrigeration Systems An Introduction to Centrifugal Compressors -- 32.1 Refrigerant Receiver -- 32.2 Evaporator Temperature Control -- 32.3 Compressor and Condenser Operation -- 32.4 Refrigerant Composition -- 33 Cooling Water Systems -- 33.1 Locating Exchanger Tube Leaks -- 33.2 Tube-Side Fouling -- 33.3 Changing Tube-Side Passes -- 33.4 Cooling Tower pH Control -- 33.5 Wooden Cooling Towers -- 33.6 Back-Flushing and Air Rumbling -- 33.7 Acid Cleaning -- 33.8 Increasing Water Flow -- 33.9 Piping Pressure Losses -- 33.10 Cooling Tower Efficiency -- 33.11 Wet Bulb Temperature -- Reference -- 34 Catalytic Effects: Equilibrium and Kinetics -- 34.1 Kinetics vs. Equilibrium -- 34.2 Temperature vs. Time -- 34.3 Purpose of a Catalyst -- 34.4 Lessons from Lithuania -- 34.5 Zero Order Reactions -- 34.6 Runaway Reaction -- 34.7 Common Chemical Plant and Refinery Catalytic Processes -- 34.8 Summary -- 35 Centrifugal Pumps: Fundamentals of Operation Head, Flow, and Pressure -- 35.1 Head -- 35.2 Starting NPSH Requirement -- 35.3 Pressure -- 35.4 Pump Impeller -- 35.5 Effect of Temperature on Pump Capacity -- 34.6 Positive-Displacement Pumps -- 36 Centrifugal Pumps: Driver Limits Electric Motors and Steam Turbines -- 36.1 Electric Motors -- 36.2 Steam Turbines -- 36.3 Gears -- Reference -- 37 Centrifugal Pumps: Suction Pressure Limits Cavitation and Net Positive Suction Head -- 37.1 Cavitation and Net Positive Suction Head -- 37.2 Subatmospheric Suction Pressure -- 38 Centrifugal Pumps: Reducing Seal and Bearing Failures -- 38.1 A Packed Pump -- 38.2 Mechanical Seal -- 38.3 Purpose of Seal Flush -- 38.4 Seal Leaks -- 38.5 Wasting External Seal Flush Oil -- 38.6 Double Mechanical Seal -- 38.7 Dry Seals -- 38.8 Application of Nitrogen Barrier Seals Using Double Mechanical Seals -- 38.9 Steam Use in Seal Chamber -- 38.10 Pressure Balancing Holes -- 38.11 Bearing Failures -- 38.12 Starting a Centrifugal Pump -- References -- 39 Control Valves -- 39.1 Pumps and Control Valves -- 39.2 Operating on the Bad Part of the Curve -- 39.3 Control Valve Position -- 39.4 Valve Position Dials -- 39.5 Air-to-Open Valves -- 39.6 Saving Energy in Existing Hydraulic Systems -- 39.7 Control Valve Bypasses -- 39.8 Plugged Control Valves
40 Separators: Vapor-Hydrocarbon-Water Liquid Settling Rates -- 40.1 Gravity Settling -- 40.2 Demisters -- 40.3 Entrainment Due to Foam -- 40.4 Water-Hydrocarbon Separations -- 40.5 Electrically Accelerated Water Coalescing -- 40.6 Static Coalescers -- 40.7 De-Entrainment Using a Vortex Tube Cluster -- 40.8 Inclined Plate Separator -- 41 Gas Compression: The Basic Idea The Second Law of Thermodynamics Made Easy -- 41.1 Relationship between Heat and Work -- 41.2 Compression Work (C -- C ) -- Reference -- 42 Centrifugal Compressors and Surge Overamping the Motor Driver -- 42.1 Centrifugal Compression and Surge -- 42.2 Compressor Efficiency -- 42.3 Frequently Asked Questions about Centrifugal Compressors -- 43 Reciprocating Compressors The Carnot Cycle; Use of Indicator Card -- 43.1 Theory of Reciprocating Compressor Operation -- 43.2 The Carnot Cycle -- 43.3 The Indicator Card -- 43.4 Volumetric Compressor Efficiency -- 43.5 Inlet Valve Cap Temperature -- 43.6 Unloaders -- 43.7 Rod Loading -- 43.8 Variable Molecular Weight -- 44 Compressor Efficiency Effect on Driver Load -- 44.1 Jet Engine -- 44.2 Controlling Vibration and Temperature Rise -- 44.3 Relative Efficiency -- 44.4 Relative Work: External Pressure Losses -- Reference -- 45 Safety Concerns Relief Valves, Corrosion, and Safety Trips -- 45.1 Relief-Valve Plugging -- 45.2 Relieving to Atmosphere -- 45.3 Corrosion Monitoring -- 45.4 Alarms and Trips -- 45.5 Auto-ignition of Hydrocarbons -- 45.6 Paper Gaskets -- 45.7 Calculating Heats of Reaction -- 45.8 Hot Water Explodes Out of Manway -- 46 Relief Valve System Design -- 46.1 Coke Drums -- 46.2 High-Pressure Fixed-Bed Reactors -- 46.3 Trayed Towers and Packed Columns -- 46.4 Liquid-Filled Vessels -- 46.5 Sour Water Strippers -- 46.6 Protecting Relief Valves from Fouling and Corrosion -- 46.7 Dual Relief Valves -- 46.8 Process Design Responsibility for Relief Valve Design -- 46.9 Relief Valve and Pressure Sensing Connections -- 46.10 Heat Exchanger Safety Reliefs -- 46.11 Relief Valve Effluents -- 46.12 Maintaining Flare Header Positive Pressures -- 46.13 Leaking Relief Valves -- 46.14 Tray Failure Due to Relief Valves -- 46.15 The Piper Alpha Rig Destruction -- 47 Setting Pressure Relief Valves -- 47.1 Maximum Allowable Working Pressure -- 47.2 Exchanger Protected by Its Own Relief Valve -- 47.3 Chain Lock-Open -- 47.4 The Situation at the Refinery in Tulsa -- 47.5 Relief Valve Location on Distillation Towers -- 47.6 Use of Rupture Disks Beneath Relief Valves -- 47.7 Coke Drum Relief Valve Location -- Reference -- 48 Reduction of Flare Losses -- 48.1 Measuring Losses to Flare from Individual Locations -- 48.2 Leaking Relief Valves -- 48.3 Venting to the Flare -- 48.4 Sludge in Cooling Tower Water
48.5 Cooling Water Line Sludge Accumulation -- 48.6 Cooling Water Lines Pressure Drop -- 48.7 Air-Cooled Condensers -- 48.8 Optimizing Air Cooler Blade Angles -- 48.9 Water Mist -- 48.10 Air Back-Flow -- 48.11 Slipping Belts -- 48.12 Minimizing Cracked Gas Evolution -- 48.13 Flaring Due to Leaking Hot Vapor Bypass Tower Pressure Control -- 48.14 Flare Recovery Systems -- 48.15 Flare Recovery Systems -- References -- 49 Corrosion?Process Units -- 49.1 Closer to Home -- 49.2 Erosive Velocities -- 49.3 Mixed Phase Flow -- 49.4 Carbonate Corrosion -- 49.5 Naphthenic Acid Attack -- 49.6 A Short History of Corrosion -- 49.7 Corrosion?Fired Heaters -- 49.8 Oil-Fired Heaters -- 49.9 Finned-Tube Corrosion -- 49.10 Field Identification of Piping Metallurgy -- 49.11 Carboxylic Acid Corrosion -- 50 Waste Water Strippers -- 50.1 Purpose of Sour Water Strippers -- 50.2 Two-Stage Sour Water Stripper -- 50.3 Tray Efficiency -- 50.4 Computer Simulation and Theoretical Tray Efficiency -- 50.5 Use of Caustic to Improve Stripping -- 50.6 Water Stripper Reboiler Corrosion and Fouling -- 50.7 Ballast Water Stripper -- 50.8 Conclusions -- Reference -- 51 Fluid Flow in Pipes Basic Ideas to Evaluate Newtonian and Non-Newtonian Flow -- 51.1 Field Engineer?s Method for Estimating Pipe Flow -- 51.2 Field Pressure Drop Survey -- 51.3 Line Sizing for Low-Viscosity and Turbulent Flow -- 51.4 Frictional Pressure Loss in Rough and Smooth Pipe -- 51.5 Special Case for Laminar Flow -- 51.6 Smooth Pipes and Turbulent Flow -- 51.7 Very Rough Pipes and Very Turbulent Flow -- 51.8 Non-Newtonian Fluids -- 51.9 Some Types of Flow Behavior -- 51.10 Viscoelastic Fluids -- 51.11 Identifying the Type of Flow Behavior -- 51.12 Apparent and Effective Viscosity of Non-Newtonian Liquids -- 51.13 The Power Law or Ostwald de Waele Model -- 51.14 Generalized Reynolds Numbers -- References -- 52 Super-Fractionation Separation Stage -- 52.1 My First Encounter with Super-Fractionation -- 52.2 Kettle Reboiler -- 52.3 Partial Condenser -- 52.4 Side Reboilers and Intercoolers -- 53 Hand Calculations for Distillation Towers Vapor-Liquid Equilibrium, Absorption, and Stripping Calculations -- 53.1 Introduction -- 53.2 Bubble Point and Dew Point Calculations -- 53.3 The Absorption Factor or Stripping Factor Chart -- 53.4 Conclusion -- References -- 54 Computer Modeling and Control -- 54.1 Modeling a Propane-Propylene Splitter -- 54.2 Computer Control -- 54.3 Cannabinoid Fractionator -- 54.4 Distillation Simulation -- 54.5 Computer Control of Distillation Towers -- 54.6 Material Balance Problems in Computer Modeling -- 54.7 Fifth Edition Update Comments -- 55 Taking Measurements and Samples in the Field and Troubleshooting Process Problems -- 55.1 The Flooding De-ethanizer -- 55.2 The Elements of Troubleshooting -- 55.3 Field Calculations -- 55.4 Troubleshooting Tools?Your Wrench -- 55.5 Troubleshooting Methods -- 55.6 Field Measurements -- 51.7 An Afterword -- Glossary -- Index
Summary A practical and accessible reference book for process industry professionals and students seeking the latest methods for troubleshooting and maintaining process equipment
Bibliography Includes bibliographical references and index
Notes In English
Online resource; title from PDF title page (Access Engineering, viewed on August 15, 2022)
Subject Chemical plants -- Equipment and supplies.
Chemical plants -- Equipment and supplies
Form Electronic book
Author Lieberman, Elizabeth T., author.
ISBN 9781260461671
126046167X