Limit search to available items
Book Cover
E-book
Author Bernstein, Joseph B

Title Reliability Prediction for Microelectronics
Published Newark : John Wiley & Sons, Incorporated, 2024

Copies

Description 1 online resource (401 p.)
Series Quality and Reliability Engineering Series
Quality and Reliability Engineering Series
Contents Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Author Biography -- Series Foreword -- Preface -- Scope -- Introduction -- Chapter 1 Conventional Electronic System Reliability Prediction -- 1.1 Electronic Reliability Prediction Methods -- 1.2 Electronic Reliability in Manufacturing, Production, and Operations -- 1.2.1 Failure Foundation -- 1.2.2 Reliability Foundational Models (Markovian, Gamma, Lévy, Wiener Processes) -- 1.2.3 Correlation Versus Causation and Representativeness of Trackers -- 1.2.4 Functional Safety Standard ISO 26262
1.2.5 Additional Considerations -- 1.3 Reliability Criteria -- 1.3.1 The Failure Rate Curve for Electronic Systems -- 1.3.2 Basic Lifetime Distribution Models -- 1.4 Reliability Testing -- 1.4.1 Reliability Test Methods -- 1.4.2 Accelerated Testing -- Chapter 2 The Fundamentals of Failure -- 2.1 The Random Walk -- 2.1.1 Approximate Solution -- 2.1.2 Constant Velocity -- 2.2 Diffusion -- 2.2.1 Particle Diffusion -- 2.3 Solutions for the Diffusion Equation -- 2.3.1 Normal Distribution -- 2.3.2 Error Function Solution -- 2.3.3 Finite Thickness -- 2.3.4 Thermal Diffusion -- 2.4 Drift
2.5 Statistical Mechanics -- 2.5.1 Energy -- 2.6 Chemical Potential -- 2.6.1 Thermodynamics -- 2.7 Thermal Activation Energy -- 2.7.1 Arrhenius Relation -- 2.7.2 Einstein Relation -- 2.7.3 Magnitude of Energy -- 2.8 Oxidation and Corrosion -- 2.8.1 Reaction Rate -- 2.8.2 Limiting Time Scales -- 2.8.3 Material Properties -- 2.9 Vibration -- 2.9.1 Oscillations -- 2.9.2 Multiple Resonances -- 2.9.3 Random Vibration -- 2.10 Summary -- Chapter 3 Physics-of-Failure-based Circuit Reliability -- 3.1 Problematic Areas -- 3.1.1 Single-Failure Mechanism Versus Competing-Failure Mechanism
3.1.2 Acceleration Factor -- 3.1.3 An Alternative Acceleration Factor Calculation -- Matrix Method -- 3.1.4 Single-Failure Mechanism Assumption: Conventional Approach -- 3.1.5 Failure Rate Calculations Assuming Multiple-Failure Mechanism -- 3.1.6 Constant-Failure-Rate Approximation/Justification -- 3.1.7 Exponential Distribution and Its Characterization -- 3.2 Reliability of Complex Systems -- 3.2.1 Drenick's Theorem -- 3.3 Physics-of-Failure-based Circuit Reliability Prediction Methodology -- 3.3.1 Methodology -- 3.3.2 Assembly, Materials and Processes, and Packaging -- 3.3.3 External Environment
3.3.4 PoF and Failure Mechanisms -- 3.3.5 Key Considerations for Reliability Models in Emerging Technologies -- 3.3.6 Input Data -- 3.3.7 Applicability of Reliability Models -- Chapter 4 Transition State Theory -- 4.1 Stress-Related Failure Mechanisms -- 4.2 Non-Arrhenius Model Parameters -- 4.2.1 Hot Carrier Injection (HCI) -- 4.2.2 Negative Apparent EA -- 4.2.3 Time-Dependent Dielectric Breakdown (TDDB) -- 4.2.3.1 Thermochemical E-Model -- 4.2.3.2 1/E Model (Anode-Hole Injection Model) -- 4.2.3.3 Power-Law Voltage VN-Model -- 4.2.3.4 Exponential E1/2-Model -- 4.2.3.5 Percolation Model
Notes Description based upon print version of record
4.2.4 Stress-Induced Leakage Current (SILC)
Genre/Form Electronic books
Form Electronic book
Author Bensoussan, Alain
Bender, Emmanuel
ISBN 9781394210947
1394210949
1394210965
9781394210961